Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{4}+3x^{3}-8x^{2}-9x+6=0
Kia tauwehea ai te kīanga, me whakaoti te whārite ina ōrite ki te 0.
±3,±6,±\frac{3}{2},±1,±2,±\frac{1}{2}
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 6, ā, ka wehea e q te whakarea arahanga 2. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-2
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
2x^{3}-x^{2}-6x+3=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 2x^{4}+3x^{3}-8x^{2}-9x+6 ki te x+2, kia riro ko 2x^{3}-x^{2}-6x+3. Kia tauwehea ai te otinga, me whakaoti te whārite ina ōrite ki te 0.
±\frac{3}{2},±3,±\frac{1}{2},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 3, ā, ka wehea e q te whakarea arahanga 2. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=\frac{1}{2}
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-3=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 2x^{3}-x^{2}-6x+3 ki te 2\left(x-\frac{1}{2}\right)=2x-1, kia riro ko x^{2}-3. Kia tauwehea ai te otinga, me whakaoti te whārite ina ōrite ki te 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-3\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 0 mō te b, me te -3 mō te c i te ture pūrua.
x=\frac{0±2\sqrt{3}}{2}
Mahia ngā tātaitai.
x=-\sqrt{3} x=\sqrt{3}
Whakaotia te whārite x^{2}-3=0 ina he tōrunga te ±, ina he tōraro te ±.
\left(2x-1\right)\left(x+2\right)\left(x^{2}-3\right)
Me tuhi anō te kīanga whakatauwehe mā ngā pūtake i riro. Kāore te pūrau x^{2}-3 i whakatauwehea i te mea kāhore ōna pūtake whakahau.