Whakaoti mō h
\left\{\begin{matrix}h=-\frac{2x^{2}-8x+k-5}{x\left(x-4\right)}\text{, }&x\neq 4\text{ and }x\neq 0\\h\in \mathrm{R}\text{, }&\left(x=0\text{ or }x=4\right)\text{ and }k=5\end{matrix}\right.
Whakaoti mō k
k=5+8x+4hx-2x^{2}-hx^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{3}-10x^{2}+11x-7=2x^{3}+hx^{2}+3x-8x^{2}-4hx-12+k
Whakamahia te āhuatanga tohatoha hei whakarea te x-4 ki te 2x^{2}+hx+3.
2x^{3}+hx^{2}+3x-8x^{2}-4hx-12+k=2x^{3}-10x^{2}+11x-7
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
hx^{2}+3x-8x^{2}-4hx-12+k=2x^{3}-10x^{2}+11x-7-2x^{3}
Tangohia te 2x^{3} mai i ngā taha e rua.
hx^{2}+3x-8x^{2}-4hx-12+k=-10x^{2}+11x-7
Pahekotia te 2x^{3} me -2x^{3}, ka 0.
hx^{2}-8x^{2}-4hx-12+k=-10x^{2}+11x-7-3x
Tangohia te 3x mai i ngā taha e rua.
hx^{2}-8x^{2}-4hx-12+k=-10x^{2}+8x-7
Pahekotia te 11x me -3x, ka 8x.
hx^{2}-4hx-12+k=-10x^{2}+8x-7+8x^{2}
Me tāpiri te 8x^{2} ki ngā taha e rua.
hx^{2}-4hx-12+k=-2x^{2}+8x-7
Pahekotia te -10x^{2} me 8x^{2}, ka -2x^{2}.
hx^{2}-4hx+k=-2x^{2}+8x-7+12
Me tāpiri te 12 ki ngā taha e rua.
hx^{2}-4hx+k=-2x^{2}+8x+5
Tāpirihia te -7 ki te 12, ka 5.
hx^{2}-4hx=-2x^{2}+8x+5-k
Tangohia te k mai i ngā taha e rua.
\left(x^{2}-4x\right)h=-2x^{2}+8x+5-k
Pahekotia ngā kīanga tau katoa e whai ana i te h.
\left(x^{2}-4x\right)h=5-k+8x-2x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(x^{2}-4x\right)h}{x^{2}-4x}=\frac{5-k+8x-2x^{2}}{x^{2}-4x}
Whakawehea ngā taha e rua ki te x^{2}-4x.
h=\frac{5-k+8x-2x^{2}}{x^{2}-4x}
Mā te whakawehe ki te x^{2}-4x ka wetekia te whakareanga ki te x^{2}-4x.
h=\frac{5-k+8x-2x^{2}}{x\left(x-4\right)}
Whakawehe -2x^{2}+8x+5-k ki te x^{2}-4x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}