Tauwehe
\left(x-9\right)\left(2x+9\right)
Aromātai
\left(x-9\right)\left(2x+9\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-9 ab=2\left(-81\right)=-162
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx-81. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-162 2,-81 3,-54 6,-27 9,-18
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -162.
1-162=-161 2-81=-79 3-54=-51 6-27=-21 9-18=-9
Tātaihia te tapeke mō ia takirua.
a=-18 b=9
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(2x^{2}-18x\right)+\left(9x-81\right)
Tuhia anō te 2x^{2}-9x-81 hei \left(2x^{2}-18x\right)+\left(9x-81\right).
2x\left(x-9\right)+9\left(x-9\right)
Tauwehea te 2x i te tuatahi me te 9 i te rōpū tuarua.
\left(x-9\right)\left(2x+9\right)
Whakatauwehea atu te kīanga pātahi x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
2x^{2}-9x-81=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\left(-81\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\left(-81\right)}}{2\times 2}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-8\left(-81\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-9\right)±\sqrt{81+648}}{2\times 2}
Whakareatia -8 ki te -81.
x=\frac{-\left(-9\right)±\sqrt{729}}{2\times 2}
Tāpiri 81 ki te 648.
x=\frac{-\left(-9\right)±27}{2\times 2}
Tuhia te pūtakerua o te 729.
x=\frac{9±27}{2\times 2}
Ko te tauaro o -9 ko 9.
x=\frac{9±27}{4}
Whakareatia 2 ki te 2.
x=\frac{36}{4}
Nā, me whakaoti te whārite x=\frac{9±27}{4} ina he tāpiri te ±. Tāpiri 9 ki te 27.
x=9
Whakawehe 36 ki te 4.
x=-\frac{18}{4}
Nā, me whakaoti te whārite x=\frac{9±27}{4} ina he tango te ±. Tango 27 mai i 9.
x=-\frac{9}{2}
Whakahekea te hautanga \frac{-18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
2x^{2}-9x-81=2\left(x-9\right)\left(x-\left(-\frac{9}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 9 mō te x_{1} me te -\frac{9}{2} mō te x_{2}.
2x^{2}-9x-81=2\left(x-9\right)\left(x+\frac{9}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
2x^{2}-9x-81=2\left(x-9\right)\times \frac{2x+9}{2}
Tāpiri \frac{9}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2x^{2}-9x-81=\left(x-9\right)\left(2x+9\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}