Whakaoti mō x
x = \frac{\sqrt{41} + 9}{4} \approx 3.850781059
x=\frac{9-\sqrt{41}}{4}\approx 0.649218941
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-9x+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\times 5}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -9 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\times 5}}{2\times 2}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-8\times 5}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-9\right)±\sqrt{81-40}}{2\times 2}
Whakareatia -8 ki te 5.
x=\frac{-\left(-9\right)±\sqrt{41}}{2\times 2}
Tāpiri 81 ki te -40.
x=\frac{9±\sqrt{41}}{2\times 2}
Ko te tauaro o -9 ko 9.
x=\frac{9±\sqrt{41}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{41}+9}{4}
Nā, me whakaoti te whārite x=\frac{9±\sqrt{41}}{4} ina he tāpiri te ±. Tāpiri 9 ki te \sqrt{41}.
x=\frac{9-\sqrt{41}}{4}
Nā, me whakaoti te whārite x=\frac{9±\sqrt{41}}{4} ina he tango te ±. Tango \sqrt{41} mai i 9.
x=\frac{\sqrt{41}+9}{4} x=\frac{9-\sqrt{41}}{4}
Kua oti te whārite te whakatau.
2x^{2}-9x+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-9x+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
2x^{2}-9x=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}-9x}{2}=-\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{9}{2}x=-\frac{5}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-\frac{5}{2}+\left(-\frac{9}{4}\right)^{2}
Whakawehea te -\frac{9}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{4}. Nā, tāpiria te pūrua o te -\frac{9}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-\frac{5}{2}+\frac{81}{16}
Pūruatia -\frac{9}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{41}{16}
Tāpiri -\frac{5}{2} ki te \frac{81}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{4}\right)^{2}=\frac{41}{16}
Tauwehea x^{2}-\frac{9}{2}x+\frac{81}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{4}=\frac{\sqrt{41}}{4} x-\frac{9}{4}=-\frac{\sqrt{41}}{4}
Whakarūnātia.
x=\frac{\sqrt{41}+9}{4} x=\frac{9-\sqrt{41}}{4}
Me tāpiri \frac{9}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}