Whakaoti mō x (complex solution)
x=\frac{35}{2}+\frac{35}{2}i=17.5+17.5i
x=\frac{35}{2}-\frac{35}{2}i=17.5-17.5i
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-70x+1225=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\times 2\times 1225}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -70 mō b, me 1225 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-70\right)±\sqrt{4900-4\times 2\times 1225}}{2\times 2}
Pūrua -70.
x=\frac{-\left(-70\right)±\sqrt{4900-8\times 1225}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-70\right)±\sqrt{4900-9800}}{2\times 2}
Whakareatia -8 ki te 1225.
x=\frac{-\left(-70\right)±\sqrt{-4900}}{2\times 2}
Tāpiri 4900 ki te -9800.
x=\frac{-\left(-70\right)±70i}{2\times 2}
Tuhia te pūtakerua o te -4900.
x=\frac{70±70i}{2\times 2}
Ko te tauaro o -70 ko 70.
x=\frac{70±70i}{4}
Whakareatia 2 ki te 2.
x=\frac{70+70i}{4}
Nā, me whakaoti te whārite x=\frac{70±70i}{4} ina he tāpiri te ±. Tāpiri 70 ki te 70i.
x=\frac{35}{2}+\frac{35}{2}i
Whakawehe 70+70i ki te 4.
x=\frac{70-70i}{4}
Nā, me whakaoti te whārite x=\frac{70±70i}{4} ina he tango te ±. Tango 70i mai i 70.
x=\frac{35}{2}-\frac{35}{2}i
Whakawehe 70-70i ki te 4.
x=\frac{35}{2}+\frac{35}{2}i x=\frac{35}{2}-\frac{35}{2}i
Kua oti te whārite te whakatau.
2x^{2}-70x+1225=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-70x+1225-1225=-1225
Me tango 1225 mai i ngā taha e rua o te whārite.
2x^{2}-70x=-1225
Mā te tango i te 1225 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}-70x}{2}=-\frac{1225}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{70}{2}\right)x=-\frac{1225}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-35x=-\frac{1225}{2}
Whakawehe -70 ki te 2.
x^{2}-35x+\left(-\frac{35}{2}\right)^{2}=-\frac{1225}{2}+\left(-\frac{35}{2}\right)^{2}
Whakawehea te -35, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{35}{2}. Nā, tāpiria te pūrua o te -\frac{35}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-35x+\frac{1225}{4}=-\frac{1225}{2}+\frac{1225}{4}
Pūruatia -\frac{35}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-35x+\frac{1225}{4}=-\frac{1225}{4}
Tāpiri -\frac{1225}{2} ki te \frac{1225}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{35}{2}\right)^{2}=-\frac{1225}{4}
Tauwehea x^{2}-35x+\frac{1225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{2}\right)^{2}}=\sqrt{-\frac{1225}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{35}{2}=\frac{35}{2}i x-\frac{35}{2}=-\frac{35}{2}i
Whakarūnātia.
x=\frac{35}{2}+\frac{35}{2}i x=\frac{35}{2}-\frac{35}{2}i
Me tāpiri \frac{35}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}