Whakaoti mō x
x=-30
x=60
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-30x-1800=0
Whakawehea ngā taha e rua ki te 2.
a+b=-30 ab=1\left(-1800\right)=-1800
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-1800. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-1800 2,-900 3,-600 4,-450 5,-360 6,-300 8,-225 9,-200 10,-180 12,-150 15,-120 18,-100 20,-90 24,-75 25,-72 30,-60 36,-50 40,-45
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -1800.
1-1800=-1799 2-900=-898 3-600=-597 4-450=-446 5-360=-355 6-300=-294 8-225=-217 9-200=-191 10-180=-170 12-150=-138 15-120=-105 18-100=-82 20-90=-70 24-75=-51 25-72=-47 30-60=-30 36-50=-14 40-45=-5
Tātaihia te tapeke mō ia takirua.
a=-60 b=30
Ko te otinga te takirua ka hoatu i te tapeke -30.
\left(x^{2}-60x\right)+\left(30x-1800\right)
Tuhia anō te x^{2}-30x-1800 hei \left(x^{2}-60x\right)+\left(30x-1800\right).
x\left(x-60\right)+30\left(x-60\right)
Tauwehea te x i te tuatahi me te 30 i te rōpū tuarua.
\left(x-60\right)\left(x+30\right)
Whakatauwehea atu te kīanga pātahi x-60 mā te whakamahi i te āhuatanga tātai tohatoha.
x=60 x=-30
Hei kimi otinga whārite, me whakaoti te x-60=0 me te x+30=0.
2x^{2}-60x-3600=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 2\left(-3600\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -60 mō b, me -3600 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-60\right)±\sqrt{3600-4\times 2\left(-3600\right)}}{2\times 2}
Pūrua -60.
x=\frac{-\left(-60\right)±\sqrt{3600-8\left(-3600\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-60\right)±\sqrt{3600+28800}}{2\times 2}
Whakareatia -8 ki te -3600.
x=\frac{-\left(-60\right)±\sqrt{32400}}{2\times 2}
Tāpiri 3600 ki te 28800.
x=\frac{-\left(-60\right)±180}{2\times 2}
Tuhia te pūtakerua o te 32400.
x=\frac{60±180}{2\times 2}
Ko te tauaro o -60 ko 60.
x=\frac{60±180}{4}
Whakareatia 2 ki te 2.
x=\frac{240}{4}
Nā, me whakaoti te whārite x=\frac{60±180}{4} ina he tāpiri te ±. Tāpiri 60 ki te 180.
x=60
Whakawehe 240 ki te 4.
x=-\frac{120}{4}
Nā, me whakaoti te whārite x=\frac{60±180}{4} ina he tango te ±. Tango 180 mai i 60.
x=-30
Whakawehe -120 ki te 4.
x=60 x=-30
Kua oti te whārite te whakatau.
2x^{2}-60x-3600=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-60x-3600-\left(-3600\right)=-\left(-3600\right)
Me tāpiri 3600 ki ngā taha e rua o te whārite.
2x^{2}-60x=-\left(-3600\right)
Mā te tango i te -3600 i a ia ake anō ka toe ko te 0.
2x^{2}-60x=3600
Tango -3600 mai i 0.
\frac{2x^{2}-60x}{2}=\frac{3600}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{60}{2}\right)x=\frac{3600}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-30x=\frac{3600}{2}
Whakawehe -60 ki te 2.
x^{2}-30x=1800
Whakawehe 3600 ki te 2.
x^{2}-30x+\left(-15\right)^{2}=1800+\left(-15\right)^{2}
Whakawehea te -30, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -15. Nā, tāpiria te pūrua o te -15 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-30x+225=1800+225
Pūrua -15.
x^{2}-30x+225=2025
Tāpiri 1800 ki te 225.
\left(x-15\right)^{2}=2025
Tauwehea x^{2}-30x+225. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{2025}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-15=45 x-15=-45
Whakarūnātia.
x=60 x=-30
Me tāpiri 15 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}