Whakaoti mō x
x=-4
x=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-6x-56=0
Tangohia te 56 mai i ngā taha e rua.
x^{2}-3x-28=0
Whakawehea ngā taha e rua ki te 2.
a+b=-3 ab=1\left(-28\right)=-28
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-28 2,-14 4,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -28.
1-28=-27 2-14=-12 4-7=-3
Tātaihia te tapeke mō ia takirua.
a=-7 b=4
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(x^{2}-7x\right)+\left(4x-28\right)
Tuhia anō te x^{2}-3x-28 hei \left(x^{2}-7x\right)+\left(4x-28\right).
x\left(x-7\right)+4\left(x-7\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-7\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=7 x=-4
Hei kimi otinga whārite, me whakaoti te x-7=0 me te x+4=0.
2x^{2}-6x=56
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
2x^{2}-6x-56=56-56
Me tango 56 mai i ngā taha e rua o te whārite.
2x^{2}-6x-56=0
Mā te tango i te 56 i a ia ake anō ka toe ko te 0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-56\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -6 mō b, me -56 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-56\right)}}{2\times 2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-8\left(-56\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-6\right)±\sqrt{36+448}}{2\times 2}
Whakareatia -8 ki te -56.
x=\frac{-\left(-6\right)±\sqrt{484}}{2\times 2}
Tāpiri 36 ki te 448.
x=\frac{-\left(-6\right)±22}{2\times 2}
Tuhia te pūtakerua o te 484.
x=\frac{6±22}{2\times 2}
Ko te tauaro o -6 ko 6.
x=\frac{6±22}{4}
Whakareatia 2 ki te 2.
x=\frac{28}{4}
Nā, me whakaoti te whārite x=\frac{6±22}{4} ina he tāpiri te ±. Tāpiri 6 ki te 22.
x=7
Whakawehe 28 ki te 4.
x=-\frac{16}{4}
Nā, me whakaoti te whārite x=\frac{6±22}{4} ina he tango te ±. Tango 22 mai i 6.
x=-4
Whakawehe -16 ki te 4.
x=7 x=-4
Kua oti te whārite te whakatau.
2x^{2}-6x=56
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2x^{2}-6x}{2}=\frac{56}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{6}{2}\right)x=\frac{56}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-3x=\frac{56}{2}
Whakawehe -6 ki te 2.
x^{2}-3x=28
Whakawehe 56 ki te 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=28+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=28+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{121}{4}
Tāpiri 28 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{121}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{11}{2} x-\frac{3}{2}=-\frac{11}{2}
Whakarūnātia.
x=7 x=-4
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}