Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}=80+46
Me tāpiri te 46 ki ngā taha e rua.
2x^{2}=126
Tāpirihia te 80 ki te 46, ka 126.
x^{2}=\frac{126}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=63
Whakawehea te 126 ki te 2, kia riro ko 63.
x=3\sqrt{7} x=-3\sqrt{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2x^{2}-46-80=0
Tangohia te 80 mai i ngā taha e rua.
2x^{2}-126=0
Tangohia te 80 i te -46, ka -126.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-126\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me -126 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-126\right)}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\left(-126\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{1008}}{2\times 2}
Whakareatia -8 ki te -126.
x=\frac{0±12\sqrt{7}}{2\times 2}
Tuhia te pūtakerua o te 1008.
x=\frac{0±12\sqrt{7}}{4}
Whakareatia 2 ki te 2.
x=3\sqrt{7}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{7}}{4} ina he tāpiri te ±.
x=-3\sqrt{7}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{7}}{4} ina he tango te ±.
x=3\sqrt{7} x=-3\sqrt{7}
Kua oti te whārite te whakatau.