Whakaoti mō x
x=-3
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-2x-15=0
Whakawehea ngā taha e rua ki te 2.
a+b=-2 ab=1\left(-15\right)=-15
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-15 3,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -15.
1-15=-14 3-5=-2
Tātaihia te tapeke mō ia takirua.
a=-5 b=3
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(x^{2}-5x\right)+\left(3x-15\right)
Tuhia anō te x^{2}-2x-15 hei \left(x^{2}-5x\right)+\left(3x-15\right).
x\left(x-5\right)+3\left(x-5\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-5\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=-3
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+3=0.
2x^{2}-4x-30=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-30\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -4 mō b, me -30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-30\right)}}{2\times 2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-30\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-4\right)±\sqrt{16+240}}{2\times 2}
Whakareatia -8 ki te -30.
x=\frac{-\left(-4\right)±\sqrt{256}}{2\times 2}
Tāpiri 16 ki te 240.
x=\frac{-\left(-4\right)±16}{2\times 2}
Tuhia te pūtakerua o te 256.
x=\frac{4±16}{2\times 2}
Ko te tauaro o -4 ko 4.
x=\frac{4±16}{4}
Whakareatia 2 ki te 2.
x=\frac{20}{4}
Nā, me whakaoti te whārite x=\frac{4±16}{4} ina he tāpiri te ±. Tāpiri 4 ki te 16.
x=5
Whakawehe 20 ki te 4.
x=-\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{4±16}{4} ina he tango te ±. Tango 16 mai i 4.
x=-3
Whakawehe -12 ki te 4.
x=5 x=-3
Kua oti te whārite te whakatau.
2x^{2}-4x-30=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-4x-30-\left(-30\right)=-\left(-30\right)
Me tāpiri 30 ki ngā taha e rua o te whārite.
2x^{2}-4x=-\left(-30\right)
Mā te tango i te -30 i a ia ake anō ka toe ko te 0.
2x^{2}-4x=30
Tango -30 mai i 0.
\frac{2x^{2}-4x}{2}=\frac{30}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{30}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-2x=\frac{30}{2}
Whakawehe -4 ki te 2.
x^{2}-2x=15
Whakawehe 30 ki te 2.
x^{2}-2x+1=15+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=16
Tāpiri 15 ki te 1.
\left(x-1\right)^{2}=16
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=4 x-1=-4
Whakarūnātia.
x=5 x=-3
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}