Whakaoti mō x
x=-4
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Pātaitai
Polynomial
2 x ^ { 2 } - 36 = x
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-36-x=0
Tangohia te x mai i ngā taha e rua.
2x^{2}-x-36=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-1 ab=2\left(-36\right)=-72
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-36. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
Tātaihia te tapeke mō ia takirua.
a=-9 b=8
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(2x^{2}-9x\right)+\left(8x-36\right)
Tuhia anō te 2x^{2}-x-36 hei \left(2x^{2}-9x\right)+\left(8x-36\right).
x\left(2x-9\right)+4\left(2x-9\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(2x-9\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi 2x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{9}{2} x=-4
Hei kimi otinga whārite, me whakaoti te 2x-9=0 me te x+4=0.
2x^{2}-36-x=0
Tangohia te x mai i ngā taha e rua.
2x^{2}-x-36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-36\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -1 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-36\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-1\right)±\sqrt{1+288}}{2\times 2}
Whakareatia -8 ki te -36.
x=\frac{-\left(-1\right)±\sqrt{289}}{2\times 2}
Tāpiri 1 ki te 288.
x=\frac{-\left(-1\right)±17}{2\times 2}
Tuhia te pūtakerua o te 289.
x=\frac{1±17}{2\times 2}
Ko te tauaro o -1 ko 1.
x=\frac{1±17}{4}
Whakareatia 2 ki te 2.
x=\frac{18}{4}
Nā, me whakaoti te whārite x=\frac{1±17}{4} ina he tāpiri te ±. Tāpiri 1 ki te 17.
x=\frac{9}{2}
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{16}{4}
Nā, me whakaoti te whārite x=\frac{1±17}{4} ina he tango te ±. Tango 17 mai i 1.
x=-4
Whakawehe -16 ki te 4.
x=\frac{9}{2} x=-4
Kua oti te whārite te whakatau.
2x^{2}-36-x=0
Tangohia te x mai i ngā taha e rua.
2x^{2}-x=36
Me tāpiri te 36 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{2x^{2}-x}{2}=\frac{36}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{1}{2}x=\frac{36}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{1}{2}x=18
Whakawehe 36 ki te 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=18+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=18+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{289}{16}
Tāpiri 18 ki te \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{289}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{289}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{17}{4} x-\frac{1}{4}=-\frac{17}{4}
Whakarūnātia.
x=\frac{9}{2} x=-4
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}