Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-3x-1=-5
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
2x^{2}-3x-1-\left(-5\right)=-5-\left(-5\right)
Me tāpiri 5 ki ngā taha e rua o te whārite.
2x^{2}-3x-1-\left(-5\right)=0
Mā te tango i te -5 i a ia ake anō ka toe ko te 0.
2x^{2}-3x+4=0
Tango -5 mai i -1.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\times 4}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -3 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\times 4}}{2\times 2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\times 4}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-3\right)±\sqrt{9-32}}{2\times 2}
Whakareatia -8 ki te 4.
x=\frac{-\left(-3\right)±\sqrt{-23}}{2\times 2}
Tāpiri 9 ki te -32.
x=\frac{-\left(-3\right)±\sqrt{23}i}{2\times 2}
Tuhia te pūtakerua o te -23.
x=\frac{3±\sqrt{23}i}{2\times 2}
Ko te tauaro o -3 ko 3.
x=\frac{3±\sqrt{23}i}{4}
Whakareatia 2 ki te 2.
x=\frac{3+\sqrt{23}i}{4}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{23}i}{4} ina he tāpiri te ±. Tāpiri 3 ki te i\sqrt{23}.
x=\frac{-\sqrt{23}i+3}{4}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{23}i}{4} ina he tango te ±. Tango i\sqrt{23} mai i 3.
x=\frac{3+\sqrt{23}i}{4} x=\frac{-\sqrt{23}i+3}{4}
Kua oti te whārite te whakatau.
2x^{2}-3x-1=-5
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-3x-1-\left(-1\right)=-5-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
2x^{2}-3x=-5-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
2x^{2}-3x=-4
Tango -1 mai i -5.
\frac{2x^{2}-3x}{2}=-\frac{4}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{3}{2}x=-\frac{4}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{3}{2}x=-2
Whakawehe -4 ki te 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-2+\left(-\frac{3}{4}\right)^{2}
Whakawehea te -\frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{4}. Nā, tāpiria te pūrua o te -\frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-2+\frac{9}{16}
Pūruatia -\frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{23}{16}
Tāpiri -2 ki te \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=-\frac{23}{16}
Tauwehea x^{2}-\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{23}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{4}=\frac{\sqrt{23}i}{4} x-\frac{3}{4}=-\frac{\sqrt{23}i}{4}
Whakarūnātia.
x=\frac{3+\sqrt{23}i}{4} x=\frac{-\sqrt{23}i+3}{4}
Me tāpiri \frac{3}{4} ki ngā taha e rua o te whārite.