Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-29x-36=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 2\left(-36\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-29\right)±\sqrt{841-4\times 2\left(-36\right)}}{2\times 2}
Pūrua -29.
x=\frac{-\left(-29\right)±\sqrt{841-8\left(-36\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-29\right)±\sqrt{841+288}}{2\times 2}
Whakareatia -8 ki te -36.
x=\frac{-\left(-29\right)±\sqrt{1129}}{2\times 2}
Tāpiri 841 ki te 288.
x=\frac{29±\sqrt{1129}}{2\times 2}
Ko te tauaro o -29 ko 29.
x=\frac{29±\sqrt{1129}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{1129}+29}{4}
Nā, me whakaoti te whārite x=\frac{29±\sqrt{1129}}{4} ina he tāpiri te ±. Tāpiri 29 ki te \sqrt{1129}.
x=\frac{29-\sqrt{1129}}{4}
Nā, me whakaoti te whārite x=\frac{29±\sqrt{1129}}{4} ina he tango te ±. Tango \sqrt{1129} mai i 29.
2x^{2}-29x-36=2\left(x-\frac{\sqrt{1129}+29}{4}\right)\left(x-\frac{29-\sqrt{1129}}{4}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{29+\sqrt{1129}}{4} mō te x_{1} me te \frac{29-\sqrt{1129}}{4} mō te x_{2}.