Whakaoti mō x (complex solution)
x=\frac{\sqrt{146}i}{2}+7\approx 7+6.041522987i
x=-\frac{\sqrt{146}i}{2}+7\approx 7-6.041522987i
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-28x+171=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 2\times 171}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -28 mō b, me 171 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 2\times 171}}{2\times 2}
Pūrua -28.
x=\frac{-\left(-28\right)±\sqrt{784-8\times 171}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-28\right)±\sqrt{784-1368}}{2\times 2}
Whakareatia -8 ki te 171.
x=\frac{-\left(-28\right)±\sqrt{-584}}{2\times 2}
Tāpiri 784 ki te -1368.
x=\frac{-\left(-28\right)±2\sqrt{146}i}{2\times 2}
Tuhia te pūtakerua o te -584.
x=\frac{28±2\sqrt{146}i}{2\times 2}
Ko te tauaro o -28 ko 28.
x=\frac{28±2\sqrt{146}i}{4}
Whakareatia 2 ki te 2.
x=\frac{28+2\sqrt{146}i}{4}
Nā, me whakaoti te whārite x=\frac{28±2\sqrt{146}i}{4} ina he tāpiri te ±. Tāpiri 28 ki te 2i\sqrt{146}.
x=\frac{\sqrt{146}i}{2}+7
Whakawehe 28+2i\sqrt{146} ki te 4.
x=\frac{-2\sqrt{146}i+28}{4}
Nā, me whakaoti te whārite x=\frac{28±2\sqrt{146}i}{4} ina he tango te ±. Tango 2i\sqrt{146} mai i 28.
x=-\frac{\sqrt{146}i}{2}+7
Whakawehe 28-2i\sqrt{146} ki te 4.
x=\frac{\sqrt{146}i}{2}+7 x=-\frac{\sqrt{146}i}{2}+7
Kua oti te whārite te whakatau.
2x^{2}-28x+171=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-28x+171-171=-171
Me tango 171 mai i ngā taha e rua o te whārite.
2x^{2}-28x=-171
Mā te tango i te 171 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}-28x}{2}=-\frac{171}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{28}{2}\right)x=-\frac{171}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-14x=-\frac{171}{2}
Whakawehe -28 ki te 2.
x^{2}-14x+\left(-7\right)^{2}=-\frac{171}{2}+\left(-7\right)^{2}
Whakawehea te -14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -7. Nā, tāpiria te pūrua o te -7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-14x+49=-\frac{171}{2}+49
Pūrua -7.
x^{2}-14x+49=-\frac{73}{2}
Tāpiri -\frac{171}{2} ki te 49.
\left(x-7\right)^{2}=-\frac{73}{2}
Tauwehea x^{2}-14x+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{-\frac{73}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-7=\frac{\sqrt{146}i}{2} x-7=-\frac{\sqrt{146}i}{2}
Whakarūnātia.
x=\frac{\sqrt{146}i}{2}+7 x=-\frac{\sqrt{146}i}{2}+7
Me tāpiri 7 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}