Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-x-2=0
Whakawehea ngā taha e rua ki te 2.
a+b=-1 ab=1\left(-2\right)=-2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-2 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-2x\right)+\left(x-2\right)
Tuhia anō te x^{2}-x-2 hei \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Whakatauwehea atu x i te x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-1
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+1=0.
2x^{2}-2x-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-4\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -2 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-4\right)}}{2\times 2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-4\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2\times 2}
Whakareatia -8 ki te -4.
x=\frac{-\left(-2\right)±\sqrt{36}}{2\times 2}
Tāpiri 4 ki te 32.
x=\frac{-\left(-2\right)±6}{2\times 2}
Tuhia te pūtakerua o te 36.
x=\frac{2±6}{2\times 2}
Ko te tauaro o -2 ko 2.
x=\frac{2±6}{4}
Whakareatia 2 ki te 2.
x=\frac{8}{4}
Nā, me whakaoti te whārite x=\frac{2±6}{4} ina he tāpiri te ±. Tāpiri 2 ki te 6.
x=2
Whakawehe 8 ki te 4.
x=-\frac{4}{4}
Nā, me whakaoti te whārite x=\frac{2±6}{4} ina he tango te ±. Tango 6 mai i 2.
x=-1
Whakawehe -4 ki te 4.
x=2 x=-1
Kua oti te whārite te whakatau.
2x^{2}-2x-4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-2x-4-\left(-4\right)=-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
2x^{2}-2x=-\left(-4\right)
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
2x^{2}-2x=4
Tango -4 mai i 0.
\frac{2x^{2}-2x}{2}=\frac{4}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{4}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-x=\frac{4}{2}
Whakawehe -2 ki te 2.
x^{2}-x=2
Whakawehe 4 ki te 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
Tāpiri 2 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Whakarūnātia.
x=2 x=-1
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.