Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-19 ab=2\times 45=90
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx+45. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-90 -2,-45 -3,-30 -5,-18 -6,-15 -9,-10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 90.
-1-90=-91 -2-45=-47 -3-30=-33 -5-18=-23 -6-15=-21 -9-10=-19
Tātaihia te tapeke mō ia takirua.
a=-10 b=-9
Ko te otinga te takirua ka hoatu i te tapeke -19.
\left(2x^{2}-10x\right)+\left(-9x+45\right)
Tuhia anō te 2x^{2}-19x+45 hei \left(2x^{2}-10x\right)+\left(-9x+45\right).
2x\left(x-5\right)-9\left(x-5\right)
Tauwehea te 2x i te tuatahi me te -9 i te rōpū tuarua.
\left(x-5\right)\left(2x-9\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
2x^{2}-19x+45=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 2\times 45}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 2\times 45}}{2\times 2}
Pūrua -19.
x=\frac{-\left(-19\right)±\sqrt{361-8\times 45}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-19\right)±\sqrt{361-360}}{2\times 2}
Whakareatia -8 ki te 45.
x=\frac{-\left(-19\right)±\sqrt{1}}{2\times 2}
Tāpiri 361 ki te -360.
x=\frac{-\left(-19\right)±1}{2\times 2}
Tuhia te pūtakerua o te 1.
x=\frac{19±1}{2\times 2}
Ko te tauaro o -19 ko 19.
x=\frac{19±1}{4}
Whakareatia 2 ki te 2.
x=\frac{20}{4}
Nā, me whakaoti te whārite x=\frac{19±1}{4} ina he tāpiri te ±. Tāpiri 19 ki te 1.
x=5
Whakawehe 20 ki te 4.
x=\frac{18}{4}
Nā, me whakaoti te whārite x=\frac{19±1}{4} ina he tango te ±. Tango 1 mai i 19.
x=\frac{9}{2}
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
2x^{2}-19x+45=2\left(x-5\right)\left(x-\frac{9}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 5 mō te x_{1} me te \frac{9}{2} mō te x_{2}.
2x^{2}-19x+45=2\left(x-5\right)\times \frac{2x-9}{2}
Tango \frac{9}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2x^{2}-19x+45=\left(x-5\right)\left(2x-9\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.