Tauwehe
2\left(x-6\right)\left(x-3\right)
Aromātai
2\left(x-6\right)\left(x-3\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(x^{2}-9x+18\right)
Tauwehea te 2.
a+b=-9 ab=1\times 18=18
Whakaarohia te x^{2}-9x+18. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-18 -2,-9 -3,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
-1-18=-19 -2-9=-11 -3-6=-9
Tātaihia te tapeke mō ia takirua.
a=-6 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(x^{2}-6x\right)+\left(-3x+18\right)
Tuhia anō te x^{2}-9x+18 hei \left(x^{2}-6x\right)+\left(-3x+18\right).
x\left(x-6\right)-3\left(x-6\right)
Tauwehea te x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-6\right)\left(x-3\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(x-6\right)\left(x-3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
2x^{2}-18x+36=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2\times 36}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2\times 36}}{2\times 2}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324-8\times 36}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-18\right)±\sqrt{324-288}}{2\times 2}
Whakareatia -8 ki te 36.
x=\frac{-\left(-18\right)±\sqrt{36}}{2\times 2}
Tāpiri 324 ki te -288.
x=\frac{-\left(-18\right)±6}{2\times 2}
Tuhia te pūtakerua o te 36.
x=\frac{18±6}{2\times 2}
Ko te tauaro o -18 ko 18.
x=\frac{18±6}{4}
Whakareatia 2 ki te 2.
x=\frac{24}{4}
Nā, me whakaoti te whārite x=\frac{18±6}{4} ina he tāpiri te ±. Tāpiri 18 ki te 6.
x=6
Whakawehe 24 ki te 4.
x=\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{18±6}{4} ina he tango te ±. Tango 6 mai i 18.
x=3
Whakawehe 12 ki te 4.
2x^{2}-18x+36=2\left(x-6\right)\left(x-3\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 6 mō te x_{1} me te 3 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}