Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-18x+20=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2\times 20}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2\times 20}}{2\times 2}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324-8\times 20}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-18\right)±\sqrt{324-160}}{2\times 2}
Whakareatia -8 ki te 20.
x=\frac{-\left(-18\right)±\sqrt{164}}{2\times 2}
Tāpiri 324 ki te -160.
x=\frac{-\left(-18\right)±2\sqrt{41}}{2\times 2}
Tuhia te pūtakerua o te 164.
x=\frac{18±2\sqrt{41}}{2\times 2}
Ko te tauaro o -18 ko 18.
x=\frac{18±2\sqrt{41}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{41}+18}{4}
Nā, me whakaoti te whārite x=\frac{18±2\sqrt{41}}{4} ina he tāpiri te ±. Tāpiri 18 ki te 2\sqrt{41}.
x=\frac{\sqrt{41}+9}{2}
Whakawehe 18+2\sqrt{41} ki te 4.
x=\frac{18-2\sqrt{41}}{4}
Nā, me whakaoti te whārite x=\frac{18±2\sqrt{41}}{4} ina he tango te ±. Tango 2\sqrt{41} mai i 18.
x=\frac{9-\sqrt{41}}{2}
Whakawehe 18-2\sqrt{41} ki te 4.
2x^{2}-18x+20=2\left(x-\frac{\sqrt{41}+9}{2}\right)\left(x-\frac{9-\sqrt{41}}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{9+\sqrt{41}}{2} mō te x_{1} me te \frac{9-\sqrt{41}}{2} mō te x_{2}.