Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-15x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -15 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 2\left(-1\right)}}{2\times 2}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225-8\left(-1\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-15\right)±\sqrt{225+8}}{2\times 2}
Whakareatia -8 ki te -1.
x=\frac{-\left(-15\right)±\sqrt{233}}{2\times 2}
Tāpiri 225 ki te 8.
x=\frac{15±\sqrt{233}}{2\times 2}
Ko te tauaro o -15 ko 15.
x=\frac{15±\sqrt{233}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{233}+15}{4}
Nā, me whakaoti te whārite x=\frac{15±\sqrt{233}}{4} ina he tāpiri te ±. Tāpiri 15 ki te \sqrt{233}.
x=\frac{15-\sqrt{233}}{4}
Nā, me whakaoti te whārite x=\frac{15±\sqrt{233}}{4} ina he tango te ±. Tango \sqrt{233} mai i 15.
x=\frac{\sqrt{233}+15}{4} x=\frac{15-\sqrt{233}}{4}
Kua oti te whārite te whakatau.
2x^{2}-15x-1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-15x-1-\left(-1\right)=-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
2x^{2}-15x=-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
2x^{2}-15x=1
Tango -1 mai i 0.
\frac{2x^{2}-15x}{2}=\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{15}{2}x=\frac{1}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{15}{2}x+\left(-\frac{15}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{15}{4}\right)^{2}
Whakawehea te -\frac{15}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{4}. Nā, tāpiria te pūrua o te -\frac{15}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{15}{2}x+\frac{225}{16}=\frac{1}{2}+\frac{225}{16}
Pūruatia -\frac{15}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{15}{2}x+\frac{225}{16}=\frac{233}{16}
Tāpiri \frac{1}{2} ki te \frac{225}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{15}{4}\right)^{2}=\frac{233}{16}
Tauwehea x^{2}-\frac{15}{2}x+\frac{225}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{4}\right)^{2}}=\sqrt{\frac{233}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{4}=\frac{\sqrt{233}}{4} x-\frac{15}{4}=-\frac{\sqrt{233}}{4}
Whakarūnātia.
x=\frac{\sqrt{233}+15}{4} x=\frac{15-\sqrt{233}}{4}
Me tāpiri \frac{15}{4} ki ngā taha e rua o te whārite.