Whakaoti mō x
x=\frac{1}{2}=0.5
x=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-15x+7=0
Me tāpiri te 7 ki ngā taha e rua.
a+b=-15 ab=2\times 7=14
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx+7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-14 -2,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 14.
-1-14=-15 -2-7=-9
Tātaihia te tapeke mō ia takirua.
a=-14 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -15.
\left(2x^{2}-14x\right)+\left(-x+7\right)
Tuhia anō te 2x^{2}-15x+7 hei \left(2x^{2}-14x\right)+\left(-x+7\right).
2x\left(x-7\right)-\left(x-7\right)
Tauwehea te 2x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-7\right)\left(2x-1\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=7 x=\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te x-7=0 me te 2x-1=0.
2x^{2}-15x=-7
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
2x^{2}-15x-\left(-7\right)=-7-\left(-7\right)
Me tāpiri 7 ki ngā taha e rua o te whārite.
2x^{2}-15x-\left(-7\right)=0
Mā te tango i te -7 i a ia ake anō ka toe ko te 0.
2x^{2}-15x+7=0
Tango -7 mai i 0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 2\times 7}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -15 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 2\times 7}}{2\times 2}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225-8\times 7}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-15\right)±\sqrt{225-56}}{2\times 2}
Whakareatia -8 ki te 7.
x=\frac{-\left(-15\right)±\sqrt{169}}{2\times 2}
Tāpiri 225 ki te -56.
x=\frac{-\left(-15\right)±13}{2\times 2}
Tuhia te pūtakerua o te 169.
x=\frac{15±13}{2\times 2}
Ko te tauaro o -15 ko 15.
x=\frac{15±13}{4}
Whakareatia 2 ki te 2.
x=\frac{28}{4}
Nā, me whakaoti te whārite x=\frac{15±13}{4} ina he tāpiri te ±. Tāpiri 15 ki te 13.
x=7
Whakawehe 28 ki te 4.
x=\frac{2}{4}
Nā, me whakaoti te whārite x=\frac{15±13}{4} ina he tango te ±. Tango 13 mai i 15.
x=\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=7 x=\frac{1}{2}
Kua oti te whārite te whakatau.
2x^{2}-15x=-7
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2x^{2}-15x}{2}=-\frac{7}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{15}{2}x=-\frac{7}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{15}{2}x+\left(-\frac{15}{4}\right)^{2}=-\frac{7}{2}+\left(-\frac{15}{4}\right)^{2}
Whakawehea te -\frac{15}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{4}. Nā, tāpiria te pūrua o te -\frac{15}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{15}{2}x+\frac{225}{16}=-\frac{7}{2}+\frac{225}{16}
Pūruatia -\frac{15}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{15}{2}x+\frac{225}{16}=\frac{169}{16}
Tāpiri -\frac{7}{2} ki te \frac{225}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{15}{4}\right)^{2}=\frac{169}{16}
Tauwehea x^{2}-\frac{15}{2}x+\frac{225}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{4}=\frac{13}{4} x-\frac{15}{4}=-\frac{13}{4}
Whakarūnātia.
x=7 x=\frac{1}{2}
Me tāpiri \frac{15}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}