Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x\left(2x-13\right)=0
Tauwehea te x.
x=0 x=\frac{13}{2}
Hei kimi otinga whārite, me whakaoti te x=0 me te 2x-13=0.
2x^{2}-13x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -13 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±13}{2\times 2}
Tuhia te pūtakerua o te \left(-13\right)^{2}.
x=\frac{13±13}{2\times 2}
Ko te tauaro o -13 ko 13.
x=\frac{13±13}{4}
Whakareatia 2 ki te 2.
x=\frac{26}{4}
Nā, me whakaoti te whārite x=\frac{13±13}{4} ina he tāpiri te ±. Tāpiri 13 ki te 13.
x=\frac{13}{2}
Whakahekea te hautanga \frac{26}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{0}{4}
Nā, me whakaoti te whārite x=\frac{13±13}{4} ina he tango te ±. Tango 13 mai i 13.
x=0
Whakawehe 0 ki te 4.
x=\frac{13}{2} x=0
Kua oti te whārite te whakatau.
2x^{2}-13x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2x^{2}-13x}{2}=\frac{0}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{13}{2}x=\frac{0}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{13}{2}x=0
Whakawehe 0 ki te 2.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=\left(-\frac{13}{4}\right)^{2}
Whakawehea te -\frac{13}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{4}. Nā, tāpiria te pūrua o te -\frac{13}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{169}{16}
Pūruatia -\frac{13}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{13}{4}\right)^{2}=\frac{169}{16}
Tauwehea x^{2}-\frac{13}{2}x+\frac{169}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{13}{4}=\frac{13}{4} x-\frac{13}{4}=-\frac{13}{4}
Whakarūnātia.
x=\frac{13}{2} x=0
Me tāpiri \frac{13}{4} ki ngā taha e rua o te whārite.