Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-13 ab=2\times 20=40
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx+20. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-40 -2,-20 -4,-10 -5,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 40.
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
Tātaihia te tapeke mō ia takirua.
a=-8 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(2x^{2}-8x\right)+\left(-5x+20\right)
Tuhia anō te 2x^{2}-13x+20 hei \left(2x^{2}-8x\right)+\left(-5x+20\right).
2x\left(x-4\right)-5\left(x-4\right)
Tauwehea te 2x i te tuatahi me te -5 i te rōpū tuarua.
\left(x-4\right)\left(2x-5\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
2x^{2}-13x+20=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\times 20}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 2\times 20}}{2\times 2}
Pūrua -13.
x=\frac{-\left(-13\right)±\sqrt{169-8\times 20}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-13\right)±\sqrt{169-160}}{2\times 2}
Whakareatia -8 ki te 20.
x=\frac{-\left(-13\right)±\sqrt{9}}{2\times 2}
Tāpiri 169 ki te -160.
x=\frac{-\left(-13\right)±3}{2\times 2}
Tuhia te pūtakerua o te 9.
x=\frac{13±3}{2\times 2}
Ko te tauaro o -13 ko 13.
x=\frac{13±3}{4}
Whakareatia 2 ki te 2.
x=\frac{16}{4}
Nā, me whakaoti te whārite x=\frac{13±3}{4} ina he tāpiri te ±. Tāpiri 13 ki te 3.
x=4
Whakawehe 16 ki te 4.
x=\frac{10}{4}
Nā, me whakaoti te whārite x=\frac{13±3}{4} ina he tango te ±. Tango 3 mai i 13.
x=\frac{5}{2}
Whakahekea te hautanga \frac{10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
2x^{2}-13x+20=2\left(x-4\right)\left(x-\frac{5}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4 mō te x_{1} me te \frac{5}{2} mō te x_{2}.
2x^{2}-13x+20=2\left(x-4\right)\times \frac{2x-5}{2}
Tango \frac{5}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2x^{2}-13x+20=\left(x-4\right)\left(2x-5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.