Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-12x+13=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 13}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 13}}{2\times 2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 13}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-12\right)±\sqrt{144-104}}{2\times 2}
Whakareatia -8 ki te 13.
x=\frac{-\left(-12\right)±\sqrt{40}}{2\times 2}
Tāpiri 144 ki te -104.
x=\frac{-\left(-12\right)±2\sqrt{10}}{2\times 2}
Tuhia te pūtakerua o te 40.
x=\frac{12±2\sqrt{10}}{2\times 2}
Ko te tauaro o -12 ko 12.
x=\frac{12±2\sqrt{10}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{10}+12}{4}
Nā, me whakaoti te whārite x=\frac{12±2\sqrt{10}}{4} ina he tāpiri te ±. Tāpiri 12 ki te 2\sqrt{10}.
x=\frac{\sqrt{10}}{2}+3
Whakawehe 12+2\sqrt{10} ki te 4.
x=\frac{12-2\sqrt{10}}{4}
Nā, me whakaoti te whārite x=\frac{12±2\sqrt{10}}{4} ina he tango te ±. Tango 2\sqrt{10} mai i 12.
x=-\frac{\sqrt{10}}{2}+3
Whakawehe 12-2\sqrt{10} ki te 4.
2x^{2}-12x+13=2\left(x-\left(\frac{\sqrt{10}}{2}+3\right)\right)\left(x-\left(-\frac{\sqrt{10}}{2}+3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3+\frac{\sqrt{10}}{2} mō te x_{1} me te 3-\frac{\sqrt{10}}{2} mō te x_{2}.