Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-10x-6=11\sqrt{x^{2}-5x}
Me tango 6 mai i ngā taha e rua o te whārite.
\left(2x^{2}-10x-6\right)^{2}=\left(11\sqrt{x^{2}-5x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4x^{4}-40x^{3}+76x^{2}+120x+36=\left(11\sqrt{x^{2}-5x}\right)^{2}
Pūrua 2x^{2}-10x-6.
4x^{4}-40x^{3}+76x^{2}+120x+36=11^{2}\left(\sqrt{x^{2}-5x}\right)^{2}
Whakarohaina te \left(11\sqrt{x^{2}-5x}\right)^{2}.
4x^{4}-40x^{3}+76x^{2}+120x+36=121\left(\sqrt{x^{2}-5x}\right)^{2}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
4x^{4}-40x^{3}+76x^{2}+120x+36=121\left(x^{2}-5x\right)
Tātaihia te \sqrt{x^{2}-5x} mā te pū o 2, kia riro ko x^{2}-5x.
4x^{4}-40x^{3}+76x^{2}+120x+36=121x^{2}-605x
Whakamahia te āhuatanga tohatoha hei whakarea te 121 ki te x^{2}-5x.
4x^{4}-40x^{3}+76x^{2}+120x+36-121x^{2}=-605x
Tangohia te 121x^{2} mai i ngā taha e rua.
4x^{4}-40x^{3}-45x^{2}+120x+36=-605x
Pahekotia te 76x^{2} me -121x^{2}, ka -45x^{2}.
4x^{4}-40x^{3}-45x^{2}+120x+36+605x=0
Me tāpiri te 605x ki ngā taha e rua.
4x^{4}-40x^{3}-45x^{2}+725x+36=0
Pahekotia te 120x me 605x, ka 725x.
±9,±18,±36,±\frac{9}{2},±3,±6,±12,±\frac{9}{4},±\frac{3}{2},±1,±2,±4,±\frac{3}{4},±\frac{1}{2},±\frac{1}{4}
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 36, ā, ka wehea e q te whakarea arahanga 4. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-4
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
4x^{3}-56x^{2}+179x+9=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 4x^{4}-40x^{3}-45x^{2}+725x+36 ki te x+4, kia riro ko 4x^{3}-56x^{2}+179x+9. Whakaotihia te whārite ina ōrite te hua ki te 0.
±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{4},±\frac{1}{2},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 9, ā, ka wehea e q te whakarea arahanga 4. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=9
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
4x^{2}-20x-1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 4x^{3}-56x^{2}+179x+9 ki te x-9, kia riro ko 4x^{2}-20x-1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\left(-1\right)}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te -20 mō te b, me te -1 mō te c i te ture pūrua.
x=\frac{20±4\sqrt{26}}{8}
Mahia ngā tātaitai.
x=\frac{5-\sqrt{26}}{2} x=\frac{\sqrt{26}+5}{2}
Whakaotia te whārite 4x^{2}-20x-1=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-4 x=9 x=\frac{5-\sqrt{26}}{2} x=\frac{\sqrt{26}+5}{2}
Rārangitia ngā otinga katoa i kitea.
2\left(-4\right)^{2}-10\left(-4\right)=6+11\sqrt{\left(-4\right)^{2}-5\left(-4\right)}
Whakakapia te -4 mō te x i te whārite 2x^{2}-10x=6+11\sqrt{x^{2}-5x}.
72=72
Whakarūnātia. Ko te uara x=-4 kua ngata te whārite.
2\times 9^{2}-10\times 9=6+11\sqrt{9^{2}-5\times 9}
Whakakapia te 9 mō te x i te whārite 2x^{2}-10x=6+11\sqrt{x^{2}-5x}.
72=72
Whakarūnātia. Ko te uara x=9 kua ngata te whārite.
2\times \left(\frac{5-\sqrt{26}}{2}\right)^{2}-10\times \frac{5-\sqrt{26}}{2}=6+11\sqrt{\left(\frac{5-\sqrt{26}}{2}\right)^{2}-5\times \frac{5-\sqrt{26}}{2}}
Whakakapia te \frac{5-\sqrt{26}}{2} mō te x i te whārite 2x^{2}-10x=6+11\sqrt{x^{2}-5x}.
\frac{1}{2}=\frac{23}{2}
Whakarūnātia. Ko te uara x=\frac{5-\sqrt{26}}{2} kāore e ngata ana ki te whārite.
2\times \left(\frac{\sqrt{26}+5}{2}\right)^{2}-10\times \frac{\sqrt{26}+5}{2}=6+11\sqrt{\left(\frac{\sqrt{26}+5}{2}\right)^{2}-5\times \frac{\sqrt{26}+5}{2}}
Whakakapia te \frac{\sqrt{26}+5}{2} mō te x i te whārite 2x^{2}-10x=6+11\sqrt{x^{2}-5x}.
\frac{1}{2}=\frac{23}{2}
Whakarūnātia. Ko te uara x=\frac{\sqrt{26}+5}{2} kāore e ngata ana ki te whārite.
x=-4 x=9
Rārangihia ngā rongoā katoa o 2x^{2}-10x-6=11\sqrt{x^{2}-5x}.