Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-10x+7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 7}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -10 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 7}}{2\times 2}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-8\times 7}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-10\right)±\sqrt{100-56}}{2\times 2}
Whakareatia -8 ki te 7.
x=\frac{-\left(-10\right)±\sqrt{44}}{2\times 2}
Tāpiri 100 ki te -56.
x=\frac{-\left(-10\right)±2\sqrt{11}}{2\times 2}
Tuhia te pūtakerua o te 44.
x=\frac{10±2\sqrt{11}}{2\times 2}
Ko te tauaro o -10 ko 10.
x=\frac{10±2\sqrt{11}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{11}+10}{4}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{11}}{4} ina he tāpiri te ±. Tāpiri 10 ki te 2\sqrt{11}.
x=\frac{\sqrt{11}+5}{2}
Whakawehe 10+2\sqrt{11} ki te 4.
x=\frac{10-2\sqrt{11}}{4}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{11}}{4} ina he tango te ±. Tango 2\sqrt{11} mai i 10.
x=\frac{5-\sqrt{11}}{2}
Whakawehe 10-2\sqrt{11} ki te 4.
x=\frac{\sqrt{11}+5}{2} x=\frac{5-\sqrt{11}}{2}
Kua oti te whārite te whakatau.
2x^{2}-10x+7=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-10x+7-7=-7
Me tango 7 mai i ngā taha e rua o te whārite.
2x^{2}-10x=-7
Mā te tango i te 7 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}-10x}{2}=-\frac{7}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{10}{2}\right)x=-\frac{7}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-5x=-\frac{7}{2}
Whakawehe -10 ki te 2.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{7}{2}+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=-\frac{7}{2}+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-5x+\frac{25}{4}=\frac{11}{4}
Tāpiri -\frac{7}{2} ki te \frac{25}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{2}\right)^{2}=\frac{11}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{11}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{\sqrt{11}}{2} x-\frac{5}{2}=-\frac{\sqrt{11}}{2}
Whakarūnātia.
x=\frac{\sqrt{11}+5}{2} x=\frac{5-\sqrt{11}}{2}
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.