Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-10x+7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 7}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 7}}{2\times 2}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-8\times 7}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-10\right)±\sqrt{100-56}}{2\times 2}
Whakareatia -8 ki te 7.
x=\frac{-\left(-10\right)±\sqrt{44}}{2\times 2}
Tāpiri 100 ki te -56.
x=\frac{-\left(-10\right)±2\sqrt{11}}{2\times 2}
Tuhia te pūtakerua o te 44.
x=\frac{10±2\sqrt{11}}{2\times 2}
Ko te tauaro o -10 ko 10.
x=\frac{10±2\sqrt{11}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{11}+10}{4}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{11}}{4} ina he tāpiri te ±. Tāpiri 10 ki te 2\sqrt{11}.
x=\frac{\sqrt{11}+5}{2}
Whakawehe 10+2\sqrt{11} ki te 4.
x=\frac{10-2\sqrt{11}}{4}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{11}}{4} ina he tango te ±. Tango 2\sqrt{11} mai i 10.
x=\frac{5-\sqrt{11}}{2}
Whakawehe 10-2\sqrt{11} ki te 4.
2x^{2}-10x+7=2\left(x-\frac{\sqrt{11}+5}{2}\right)\left(x-\frac{5-\sqrt{11}}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5+\sqrt{11}}{2} mō te x_{1} me te \frac{5-\sqrt{11}}{2} mō te x_{2}.