Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}=30+10
Me tāpiri te 10 ki ngā taha e rua.
2x^{2}=40
Tāpirihia te 30 ki te 10, ka 40.
x^{2}=\frac{40}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=20
Whakawehea te 40 ki te 2, kia riro ko 20.
x=2\sqrt{5} x=-2\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2x^{2}-10-30=0
Tangohia te 30 mai i ngā taha e rua.
2x^{2}-40=0
Tangohia te 30 i te -10, ka -40.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-40\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me -40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-40\right)}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\left(-40\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{320}}{2\times 2}
Whakareatia -8 ki te -40.
x=\frac{0±8\sqrt{5}}{2\times 2}
Tuhia te pūtakerua o te 320.
x=\frac{0±8\sqrt{5}}{4}
Whakareatia 2 ki te 2.
x=2\sqrt{5}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{5}}{4} ina he tāpiri te ±.
x=-2\sqrt{5}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{5}}{4} ina he tango te ±.
x=2\sqrt{5} x=-2\sqrt{5}
Kua oti te whārite te whakatau.