Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}=4+1
Me tāpiri te 1 ki ngā taha e rua.
2x^{2}=5
Tāpirihia te 4 ki te 1, ka 5.
x^{2}=\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{\sqrt{10}}{2} x=-\frac{\sqrt{10}}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2x^{2}-1-4=0
Tangohia te 4 mai i ngā taha e rua.
2x^{2}-5=0
Tangohia te 4 i te -1, ka -5.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-5\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-5\right)}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\left(-5\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{40}}{2\times 2}
Whakareatia -8 ki te -5.
x=\frac{0±2\sqrt{10}}{2\times 2}
Tuhia te pūtakerua o te 40.
x=\frac{0±2\sqrt{10}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{10}}{2}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{10}}{4} ina he tāpiri te ±.
x=-\frac{\sqrt{10}}{2}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{10}}{4} ina he tango te ±.
x=\frac{\sqrt{10}}{2} x=-\frac{\sqrt{10}}{2}
Kua oti te whārite te whakatau.