Whakaoti mō a
a=-\frac{x}{3}+\frac{1}{2}+\frac{1}{3x}
x\neq 0
Whakaoti mō x
x=\frac{\sqrt{36a^{2}-36a+25}}{4}-\frac{3a}{2}+\frac{3}{4}
x=-\frac{\sqrt{36a^{2}-36a+25}}{4}-\frac{3a}{2}+\frac{3}{4}
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-\left(3x-6ax\right)-2=0
Whakamahia te āhuatanga tohatoha hei whakarea te 3-6a ki te x.
2x^{2}-3x+6ax-2=0
Hei kimi i te tauaro o 3x-6ax, kimihia te tauaro o ia taurangi.
-3x+6ax-2=-2x^{2}
Tangohia te 2x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
6ax-2=-2x^{2}+3x
Me tāpiri te 3x ki ngā taha e rua.
6ax=-2x^{2}+3x+2
Me tāpiri te 2 ki ngā taha e rua.
6xa=2+3x-2x^{2}
He hanga arowhānui tō te whārite.
\frac{6xa}{6x}=\frac{\left(2-x\right)\left(2x+1\right)}{6x}
Whakawehea ngā taha e rua ki te 6x.
a=\frac{\left(2-x\right)\left(2x+1\right)}{6x}
Mā te whakawehe ki te 6x ka wetekia te whakareanga ki te 6x.
a=-\frac{x}{3}+\frac{1}{2}+\frac{1}{3x}
Whakawehe \left(1+2x\right)\left(2-x\right) ki te 6x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}