Whakaoti mō x (complex solution)
x=\frac{\sqrt{335}i}{40}+\frac{3}{8}\approx 0.375+0.45757513i
x=-\frac{\sqrt{335}i}{40}+\frac{3}{8}\approx 0.375-0.45757513i
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-\frac{3}{2}x+\frac{7}{10}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\times 2\times \frac{7}{10}}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -\frac{3}{2} mō b, me \frac{7}{10} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\times 2\times \frac{7}{10}}}{2\times 2}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-8\times \frac{7}{10}}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-\frac{28}{5}}}{2\times 2}
Whakareatia -8 ki te \frac{7}{10}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{-\frac{67}{20}}}{2\times 2}
Tāpiri \frac{9}{4} ki te -\frac{28}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{\sqrt{335}i}{10}}{2\times 2}
Tuhia te pūtakerua o te -\frac{67}{20}.
x=\frac{\frac{3}{2}±\frac{\sqrt{335}i}{10}}{2\times 2}
Ko te tauaro o -\frac{3}{2} ko \frac{3}{2}.
x=\frac{\frac{3}{2}±\frac{\sqrt{335}i}{10}}{4}
Whakareatia 2 ki te 2.
x=\frac{\frac{\sqrt{335}i}{10}+\frac{3}{2}}{4}
Nā, me whakaoti te whārite x=\frac{\frac{3}{2}±\frac{\sqrt{335}i}{10}}{4} ina he tāpiri te ±. Tāpiri \frac{3}{2} ki te \frac{i\sqrt{335}}{10}.
x=\frac{\sqrt{335}i}{40}+\frac{3}{8}
Whakawehe \frac{3}{2}+\frac{i\sqrt{335}}{10} ki te 4.
x=\frac{-\frac{\sqrt{335}i}{10}+\frac{3}{2}}{4}
Nā, me whakaoti te whārite x=\frac{\frac{3}{2}±\frac{\sqrt{335}i}{10}}{4} ina he tango te ±. Tango \frac{i\sqrt{335}}{10} mai i \frac{3}{2}.
x=-\frac{\sqrt{335}i}{40}+\frac{3}{8}
Whakawehe \frac{3}{2}-\frac{i\sqrt{335}}{10} ki te 4.
x=\frac{\sqrt{335}i}{40}+\frac{3}{8} x=-\frac{\sqrt{335}i}{40}+\frac{3}{8}
Kua oti te whārite te whakatau.
2x^{2}-\frac{3}{2}x+\frac{7}{10}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-\frac{3}{2}x+\frac{7}{10}-\frac{7}{10}=-\frac{7}{10}
Me tango \frac{7}{10} mai i ngā taha e rua o te whārite.
2x^{2}-\frac{3}{2}x=-\frac{7}{10}
Mā te tango i te \frac{7}{10} i a ia ake anō ka toe ko te 0.
\frac{2x^{2}-\frac{3}{2}x}{2}=-\frac{\frac{7}{10}}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{\frac{3}{2}}{2}\right)x=-\frac{\frac{7}{10}}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{3}{4}x=-\frac{\frac{7}{10}}{2}
Whakawehe -\frac{3}{2} ki te 2.
x^{2}-\frac{3}{4}x=-\frac{7}{20}
Whakawehe -\frac{7}{10} ki te 2.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=-\frac{7}{20}+\left(-\frac{3}{8}\right)^{2}
Whakawehea te -\frac{3}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{8}. Nā, tāpiria te pūrua o te -\frac{3}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{4}x+\frac{9}{64}=-\frac{7}{20}+\frac{9}{64}
Pūruatia -\frac{3}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{4}x+\frac{9}{64}=-\frac{67}{320}
Tāpiri -\frac{7}{20} ki te \frac{9}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{8}\right)^{2}=-\frac{67}{320}
Tauwehea x^{2}-\frac{3}{4}x+\frac{9}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{-\frac{67}{320}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{8}=\frac{\sqrt{335}i}{40} x-\frac{3}{8}=-\frac{\sqrt{335}i}{40}
Whakarūnātia.
x=\frac{\sqrt{335}i}{40}+\frac{3}{8} x=-\frac{\sqrt{335}i}{40}+\frac{3}{8}
Me tāpiri \frac{3}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}