Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-x=-4
Tangohia te x mai i ngā taha e rua.
2x^{2}-x+4=0
Me tāpiri te 4 ki ngā taha e rua.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\times 4}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -1 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\times 4}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-1\right)±\sqrt{1-32}}{2\times 2}
Whakareatia -8 ki te 4.
x=\frac{-\left(-1\right)±\sqrt{-31}}{2\times 2}
Tāpiri 1 ki te -32.
x=\frac{-\left(-1\right)±\sqrt{31}i}{2\times 2}
Tuhia te pūtakerua o te -31.
x=\frac{1±\sqrt{31}i}{2\times 2}
Ko te tauaro o -1 ko 1.
x=\frac{1±\sqrt{31}i}{4}
Whakareatia 2 ki te 2.
x=\frac{1+\sqrt{31}i}{4}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{31}i}{4} ina he tāpiri te ±. Tāpiri 1 ki te i\sqrt{31}.
x=\frac{-\sqrt{31}i+1}{4}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{31}i}{4} ina he tango te ±. Tango i\sqrt{31} mai i 1.
x=\frac{1+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i+1}{4}
Kua oti te whārite te whakatau.
2x^{2}-x=-4
Tangohia te x mai i ngā taha e rua.
\frac{2x^{2}-x}{2}=-\frac{4}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{1}{2}x=-\frac{4}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{1}{2}x=-2
Whakawehe -4 ki te 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-2+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-2+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{31}{16}
Tāpiri -2 ki te \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=-\frac{31}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{31}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{\sqrt{31}i}{4} x-\frac{1}{4}=-\frac{\sqrt{31}i}{4}
Whakarūnātia.
x=\frac{1+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i+1}{4}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.