Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+35x=-1
Me tāpiri te 35x ki ngā taha e rua.
2x^{2}+35x+1=0
Me tāpiri te 1 ki ngā taha e rua.
x=\frac{-35±\sqrt{35^{2}-4\times 2}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 35 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-35±\sqrt{1225-4\times 2}}{2\times 2}
Pūrua 35.
x=\frac{-35±\sqrt{1225-8}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-35±\sqrt{1217}}{2\times 2}
Tāpiri 1225 ki te -8.
x=\frac{-35±\sqrt{1217}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{1217}-35}{4}
Nā, me whakaoti te whārite x=\frac{-35±\sqrt{1217}}{4} ina he tāpiri te ±. Tāpiri -35 ki te \sqrt{1217}.
x=\frac{-\sqrt{1217}-35}{4}
Nā, me whakaoti te whārite x=\frac{-35±\sqrt{1217}}{4} ina he tango te ±. Tango \sqrt{1217} mai i -35.
x=\frac{\sqrt{1217}-35}{4} x=\frac{-\sqrt{1217}-35}{4}
Kua oti te whārite te whakatau.
2x^{2}+35x=-1
Me tāpiri te 35x ki ngā taha e rua.
\frac{2x^{2}+35x}{2}=-\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{35}{2}x=-\frac{1}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{35}{2}x+\left(\frac{35}{4}\right)^{2}=-\frac{1}{2}+\left(\frac{35}{4}\right)^{2}
Whakawehea te \frac{35}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{35}{4}. Nā, tāpiria te pūrua o te \frac{35}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{35}{2}x+\frac{1225}{16}=-\frac{1}{2}+\frac{1225}{16}
Pūruatia \frac{35}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{35}{2}x+\frac{1225}{16}=\frac{1217}{16}
Tāpiri -\frac{1}{2} ki te \frac{1225}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{35}{4}\right)^{2}=\frac{1217}{16}
Tauwehea x^{2}+\frac{35}{2}x+\frac{1225}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{35}{4}\right)^{2}}=\sqrt{\frac{1217}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{35}{4}=\frac{\sqrt{1217}}{4} x+\frac{35}{4}=-\frac{\sqrt{1217}}{4}
Whakarūnātia.
x=\frac{\sqrt{1217}-35}{4} x=\frac{-\sqrt{1217}-35}{4}
Me tango \frac{35}{4} mai i ngā taha e rua o te whārite.