Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+x-5-2x=1
Tangohia te 2x mai i ngā taha e rua.
2x^{2}-x-5=1
Pahekotia te x me -2x, ka -x.
2x^{2}-x-5-1=0
Tangohia te 1 mai i ngā taha e rua.
2x^{2}-x-6=0
Tangohia te 1 i te -5, ka -6.
a+b=-1 ab=2\left(-6\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-4 b=3
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(2x^{2}-4x\right)+\left(3x-6\right)
Tuhia anō te 2x^{2}-x-6 hei \left(2x^{2}-4x\right)+\left(3x-6\right).
2x\left(x-2\right)+3\left(x-2\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-2\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te x-2=0 me te 2x+3=0.
2x^{2}+x-5-2x=1
Tangohia te 2x mai i ngā taha e rua.
2x^{2}-x-5=1
Pahekotia te x me -2x, ka -x.
2x^{2}-x-5-1=0
Tangohia te 1 mai i ngā taha e rua.
2x^{2}-x-6=0
Tangohia te 1 i te -5, ka -6.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -1 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
Whakareatia -8 ki te -6.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
Tāpiri 1 ki te 48.
x=\frac{-\left(-1\right)±7}{2\times 2}
Tuhia te pūtakerua o te 49.
x=\frac{1±7}{2\times 2}
Ko te tauaro o -1 ko 1.
x=\frac{1±7}{4}
Whakareatia 2 ki te 2.
x=\frac{8}{4}
Nā, me whakaoti te whārite x=\frac{1±7}{4} ina he tāpiri te ±. Tāpiri 1 ki te 7.
x=2
Whakawehe 8 ki te 4.
x=-\frac{6}{4}
Nā, me whakaoti te whārite x=\frac{1±7}{4} ina he tango te ±. Tango 7 mai i 1.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=2 x=-\frac{3}{2}
Kua oti te whārite te whakatau.
2x^{2}+x-5-2x=1
Tangohia te 2x mai i ngā taha e rua.
2x^{2}-x-5=1
Pahekotia te x me -2x, ka -x.
2x^{2}-x=1+5
Me tāpiri te 5 ki ngā taha e rua.
2x^{2}-x=6
Tāpirihia te 1 ki te 5, ka 6.
\frac{2x^{2}-x}{2}=\frac{6}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{1}{2}x=\frac{6}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{1}{2}x=3
Whakawehe 6 ki te 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
Tāpiri 3 ki te \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{7}{4} x-\frac{1}{4}=-\frac{7}{4}
Whakarūnātia.
x=2 x=-\frac{3}{2}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.