Whakaoti mō x (complex solution)
x=-2+\sqrt{3}i\approx -2+1.732050808i
x=-\sqrt{3}i-2\approx -2-1.732050808i
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}+8x+14=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{8^{2}-4\times 2\times 14}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 8 mō b, me 14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2\times 14}}{2\times 2}
Pūrua 8.
x=\frac{-8±\sqrt{64-8\times 14}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-8±\sqrt{64-112}}{2\times 2}
Whakareatia -8 ki te 14.
x=\frac{-8±\sqrt{-48}}{2\times 2}
Tāpiri 64 ki te -112.
x=\frac{-8±4\sqrt{3}i}{2\times 2}
Tuhia te pūtakerua o te -48.
x=\frac{-8±4\sqrt{3}i}{4}
Whakareatia 2 ki te 2.
x=\frac{-8+4\sqrt{3}i}{4}
Nā, me whakaoti te whārite x=\frac{-8±4\sqrt{3}i}{4} ina he tāpiri te ±. Tāpiri -8 ki te 4i\sqrt{3}.
x=-2+\sqrt{3}i
Whakawehe -8+4i\sqrt{3} ki te 4.
x=\frac{-4\sqrt{3}i-8}{4}
Nā, me whakaoti te whārite x=\frac{-8±4\sqrt{3}i}{4} ina he tango te ±. Tango 4i\sqrt{3} mai i -8.
x=-\sqrt{3}i-2
Whakawehe -8-4i\sqrt{3} ki te 4.
x=-2+\sqrt{3}i x=-\sqrt{3}i-2
Kua oti te whārite te whakatau.
2x^{2}+8x+14=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+8x+14-14=-14
Me tango 14 mai i ngā taha e rua o te whārite.
2x^{2}+8x=-14
Mā te tango i te 14 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}+8x}{2}=-\frac{14}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{8}{2}x=-\frac{14}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+4x=-\frac{14}{2}
Whakawehe 8 ki te 2.
x^{2}+4x=-7
Whakawehe -14 ki te 2.
x^{2}+4x+2^{2}=-7+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=-7+4
Pūrua 2.
x^{2}+4x+4=-3
Tāpiri -7 ki te 4.
\left(x+2\right)^{2}=-3
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=\sqrt{3}i x+2=-\sqrt{3}i
Whakarūnātia.
x=-2+\sqrt{3}i x=-\sqrt{3}i-2
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}