Whakaoti mō x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=7 ab=2\times 6=12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,12 2,6 3,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
1+12=13 2+6=8 3+4=7
Tātaihia te tapeke mō ia takirua.
a=3 b=4
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(2x^{2}+3x\right)+\left(4x+6\right)
Tuhia anō te 2x^{2}+7x+6 hei \left(2x^{2}+3x\right)+\left(4x+6\right).
x\left(2x+3\right)+2\left(2x+3\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(2x+3\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi 2x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{3}{2} x=-2
Hei kimi otinga whārite, me whakaoti te 2x+3=0 me te x+2=0.
2x^{2}+7x+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 6}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 7 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\times 6}}{2\times 2}
Pūrua 7.
x=\frac{-7±\sqrt{49-8\times 6}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-7±\sqrt{49-48}}{2\times 2}
Whakareatia -8 ki te 6.
x=\frac{-7±\sqrt{1}}{2\times 2}
Tāpiri 49 ki te -48.
x=\frac{-7±1}{2\times 2}
Tuhia te pūtakerua o te 1.
x=\frac{-7±1}{4}
Whakareatia 2 ki te 2.
x=-\frac{6}{4}
Nā, me whakaoti te whārite x=\frac{-7±1}{4} ina he tāpiri te ±. Tāpiri -7 ki te 1.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{8}{4}
Nā, me whakaoti te whārite x=\frac{-7±1}{4} ina he tango te ±. Tango 1 mai i -7.
x=-2
Whakawehe -8 ki te 4.
x=-\frac{3}{2} x=-2
Kua oti te whārite te whakatau.
2x^{2}+7x+6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+7x+6-6=-6
Me tango 6 mai i ngā taha e rua o te whārite.
2x^{2}+7x=-6
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}+7x}{2}=-\frac{6}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{7}{2}x=-\frac{6}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{7}{2}x=-3
Whakawehe -6 ki te 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-3+\left(\frac{7}{4}\right)^{2}
Whakawehea te \frac{7}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{4}. Nā, tāpiria te pūrua o te \frac{7}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-3+\frac{49}{16}
Pūruatia \frac{7}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{1}{16}
Tāpiri -3 ki te \frac{49}{16}.
\left(x+\frac{7}{4}\right)^{2}=\frac{1}{16}
Tauwehea x^{2}+\frac{7}{2}x+\frac{49}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{4}=\frac{1}{4} x+\frac{7}{4}=-\frac{1}{4}
Whakarūnātia.
x=-\frac{3}{2} x=-2
Me tango \frac{7}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}