Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}=1-7
Tangohia te 7 mai i ngā taha e rua.
2x^{2}=-6
Tangohia te 7 i te 1, ka -6.
x^{2}=\frac{-6}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=-3
Whakawehea te -6 ki te 2, kia riro ko -3.
x=\sqrt{3}i x=-\sqrt{3}i
Kua oti te whārite te whakatau.
2x^{2}+7-1=0
Tangohia te 1 mai i ngā taha e rua.
2x^{2}+6=0
Tangohia te 1 i te 7, ka 6.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 6}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times 6}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\times 6}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{-48}}{2\times 2}
Whakareatia -8 ki te 6.
x=\frac{0±4\sqrt{3}i}{2\times 2}
Tuhia te pūtakerua o te -48.
x=\frac{0±4\sqrt{3}i}{4}
Whakareatia 2 ki te 2.
x=\sqrt{3}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{3}i}{4} ina he tāpiri te ±.
x=-\sqrt{3}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{3}i}{4} ina he tango te ±.
x=\sqrt{3}i x=-\sqrt{3}i
Kua oti te whārite te whakatau.