Whakaoti mō x
x=-18
x=16
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+2x-288=0
Whakawehea ngā taha e rua ki te 2.
a+b=2 ab=1\left(-288\right)=-288
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-288. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,288 -2,144 -3,96 -4,72 -6,48 -8,36 -9,32 -12,24 -16,18
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -288.
-1+288=287 -2+144=142 -3+96=93 -4+72=68 -6+48=42 -8+36=28 -9+32=23 -12+24=12 -16+18=2
Tātaihia te tapeke mō ia takirua.
a=-16 b=18
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x^{2}-16x\right)+\left(18x-288\right)
Tuhia anō te x^{2}+2x-288 hei \left(x^{2}-16x\right)+\left(18x-288\right).
x\left(x-16\right)+18\left(x-16\right)
Tauwehea te x i te tuatahi me te 18 i te rōpū tuarua.
\left(x-16\right)\left(x+18\right)
Whakatauwehea atu te kīanga pātahi x-16 mā te whakamahi i te āhuatanga tātai tohatoha.
x=16 x=-18
Hei kimi otinga whārite, me whakaoti te x-16=0 me te x+18=0.
2x^{2}+4x-576=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-576\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 4 mō b, me -576 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-576\right)}}{2\times 2}
Pūrua 4.
x=\frac{-4±\sqrt{16-8\left(-576\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-4±\sqrt{16+4608}}{2\times 2}
Whakareatia -8 ki te -576.
x=\frac{-4±\sqrt{4624}}{2\times 2}
Tāpiri 16 ki te 4608.
x=\frac{-4±68}{2\times 2}
Tuhia te pūtakerua o te 4624.
x=\frac{-4±68}{4}
Whakareatia 2 ki te 2.
x=\frac{64}{4}
Nā, me whakaoti te whārite x=\frac{-4±68}{4} ina he tāpiri te ±. Tāpiri -4 ki te 68.
x=16
Whakawehe 64 ki te 4.
x=-\frac{72}{4}
Nā, me whakaoti te whārite x=\frac{-4±68}{4} ina he tango te ±. Tango 68 mai i -4.
x=-18
Whakawehe -72 ki te 4.
x=16 x=-18
Kua oti te whārite te whakatau.
2x^{2}+4x-576=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+4x-576-\left(-576\right)=-\left(-576\right)
Me tāpiri 576 ki ngā taha e rua o te whārite.
2x^{2}+4x=-\left(-576\right)
Mā te tango i te -576 i a ia ake anō ka toe ko te 0.
2x^{2}+4x=576
Tango -576 mai i 0.
\frac{2x^{2}+4x}{2}=\frac{576}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{4}{2}x=\frac{576}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+2x=\frac{576}{2}
Whakawehe 4 ki te 2.
x^{2}+2x=288
Whakawehe 576 ki te 2.
x^{2}+2x+1^{2}=288+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=288+1
Pūrua 1.
x^{2}+2x+1=289
Tāpiri 288 ki te 1.
\left(x+1\right)^{2}=289
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{289}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=17 x+1=-17
Whakarūnātia.
x=16 x=-18
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}