Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+4x-20=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-20\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{16-4\times 2\left(-20\right)}}{2\times 2}
Pūrua 4.
x=\frac{-4±\sqrt{16-8\left(-20\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-4±\sqrt{16+160}}{2\times 2}
Whakareatia -8 ki te -20.
x=\frac{-4±\sqrt{176}}{2\times 2}
Tāpiri 16 ki te 160.
x=\frac{-4±4\sqrt{11}}{2\times 2}
Tuhia te pūtakerua o te 176.
x=\frac{-4±4\sqrt{11}}{4}
Whakareatia 2 ki te 2.
x=\frac{4\sqrt{11}-4}{4}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{11}}{4} ina he tāpiri te ±. Tāpiri -4 ki te 4\sqrt{11}.
x=\sqrt{11}-1
Whakawehe -4+4\sqrt{11} ki te 4.
x=\frac{-4\sqrt{11}-4}{4}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{11}}{4} ina he tango te ±. Tango 4\sqrt{11} mai i -4.
x=-\sqrt{11}-1
Whakawehe -4-4\sqrt{11} ki te 4.
2x^{2}+4x-20=2\left(x-\left(\sqrt{11}-1\right)\right)\left(x-\left(-\sqrt{11}-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1+\sqrt{11} mō te x_{1} me te -1-\sqrt{11} mō te x_{2}.