Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+4x+4-7444=0
Tangohia te 7444 mai i ngā taha e rua.
2x^{2}+4x-7440=0
Tangohia te 7444 i te 4, ka -7440.
x^{2}+2x-3720=0
Whakawehea ngā taha e rua ki te 2.
a+b=2 ab=1\left(-3720\right)=-3720
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-3720. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,3720 -2,1860 -3,1240 -4,930 -5,744 -6,620 -8,465 -10,372 -12,310 -15,248 -20,186 -24,155 -30,124 -31,120 -40,93 -60,62
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -3720.
-1+3720=3719 -2+1860=1858 -3+1240=1237 -4+930=926 -5+744=739 -6+620=614 -8+465=457 -10+372=362 -12+310=298 -15+248=233 -20+186=166 -24+155=131 -30+124=94 -31+120=89 -40+93=53 -60+62=2
Tātaihia te tapeke mō ia takirua.
a=-60 b=62
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x^{2}-60x\right)+\left(62x-3720\right)
Tuhia anō te x^{2}+2x-3720 hei \left(x^{2}-60x\right)+\left(62x-3720\right).
x\left(x-60\right)+62\left(x-60\right)
Tauwehea te x i te tuatahi me te 62 i te rōpū tuarua.
\left(x-60\right)\left(x+62\right)
Whakatauwehea atu te kīanga pātahi x-60 mā te whakamahi i te āhuatanga tātai tohatoha.
x=60 x=-62
Hei kimi otinga whārite, me whakaoti te x-60=0 me te x+62=0.
2x^{2}+4x+4=7444
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
2x^{2}+4x+4-7444=7444-7444
Me tango 7444 mai i ngā taha e rua o te whārite.
2x^{2}+4x+4-7444=0
Mā te tango i te 7444 i a ia ake anō ka toe ko te 0.
2x^{2}+4x-7440=0
Tango 7444 mai i 4.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-7440\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 4 mō b, me -7440 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-7440\right)}}{2\times 2}
Pūrua 4.
x=\frac{-4±\sqrt{16-8\left(-7440\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-4±\sqrt{16+59520}}{2\times 2}
Whakareatia -8 ki te -7440.
x=\frac{-4±\sqrt{59536}}{2\times 2}
Tāpiri 16 ki te 59520.
x=\frac{-4±244}{2\times 2}
Tuhia te pūtakerua o te 59536.
x=\frac{-4±244}{4}
Whakareatia 2 ki te 2.
x=\frac{240}{4}
Nā, me whakaoti te whārite x=\frac{-4±244}{4} ina he tāpiri te ±. Tāpiri -4 ki te 244.
x=60
Whakawehe 240 ki te 4.
x=-\frac{248}{4}
Nā, me whakaoti te whārite x=\frac{-4±244}{4} ina he tango te ±. Tango 244 mai i -4.
x=-62
Whakawehe -248 ki te 4.
x=60 x=-62
Kua oti te whārite te whakatau.
2x^{2}+4x+4=7444
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+4x+4-4=7444-4
Me tango 4 mai i ngā taha e rua o te whārite.
2x^{2}+4x=7444-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
2x^{2}+4x=7440
Tango 4 mai i 7444.
\frac{2x^{2}+4x}{2}=\frac{7440}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{4}{2}x=\frac{7440}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+2x=\frac{7440}{2}
Whakawehe 4 ki te 2.
x^{2}+2x=3720
Whakawehe 7440 ki te 2.
x^{2}+2x+1^{2}=3720+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=3720+1
Pūrua 1.
x^{2}+2x+1=3721
Tāpiri 3720 ki te 1.
\left(x+1\right)^{2}=3721
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{3721}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=61 x+1=-61
Whakarūnātia.
x=60 x=-62
Me tango 1 mai i ngā taha e rua o te whārite.