Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+4x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\times 2}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 4 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2}}{2\times 2}
Pūrua 4.
x=\frac{-4±\sqrt{16-8}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-4±\sqrt{8}}{2\times 2}
Tāpiri 16 ki te -8.
x=\frac{-4±2\sqrt{2}}{2\times 2}
Tuhia te pūtakerua o te 8.
x=\frac{-4±2\sqrt{2}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{2}-4}{4}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{2}}{4} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{2}.
x=\frac{\sqrt{2}}{2}-1
Whakawehe -4+2\sqrt{2} ki te 4.
x=\frac{-2\sqrt{2}-4}{4}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{2}}{4} ina he tango te ±. Tango 2\sqrt{2} mai i -4.
x=-\frac{\sqrt{2}}{2}-1
Whakawehe -4-2\sqrt{2} ki te 4.
x=\frac{\sqrt{2}}{2}-1 x=-\frac{\sqrt{2}}{2}-1
Kua oti te whārite te whakatau.
2x^{2}+4x+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+4x+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
2x^{2}+4x=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}+4x}{2}=-\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{4}{2}x=-\frac{1}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+2x=-\frac{1}{2}
Whakawehe 4 ki te 2.
x^{2}+2x+1^{2}=-\frac{1}{2}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=-\frac{1}{2}+1
Pūrua 1.
x^{2}+2x+1=\frac{1}{2}
Tāpiri -\frac{1}{2} ki te 1.
\left(x+1\right)^{2}=\frac{1}{2}
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{1}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\frac{\sqrt{2}}{2} x+1=-\frac{\sqrt{2}}{2}
Whakarūnātia.
x=\frac{\sqrt{2}}{2}-1 x=-\frac{\sqrt{2}}{2}-1
Me tango 1 mai i ngā taha e rua o te whārite.