Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+30-62=0
Tangohia te 62 mai i ngā taha e rua.
2x^{2}-32=0
Tangohia te 62 i te 30, ka -32.
x^{2}-16=0
Whakawehea ngā taha e rua ki te 2.
\left(x-4\right)\left(x+4\right)=0
Whakaarohia te x^{2}-16. Tuhia anō te x^{2}-16 hei x^{2}-4^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+4=0.
2x^{2}=62-30
Tangohia te 30 mai i ngā taha e rua.
2x^{2}=32
Tangohia te 30 i te 62, ka 32.
x^{2}=\frac{32}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=16
Whakawehea te 32 ki te 2, kia riro ko 16.
x=4 x=-4
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2x^{2}+30-62=0
Tangohia te 62 mai i ngā taha e rua.
2x^{2}-32=0
Tangohia te 62 i te 30, ka -32.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-32\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me -32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-32\right)}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\left(-32\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{256}}{2\times 2}
Whakareatia -8 ki te -32.
x=\frac{0±16}{2\times 2}
Tuhia te pūtakerua o te 256.
x=\frac{0±16}{4}
Whakareatia 2 ki te 2.
x=4
Nā, me whakaoti te whārite x=\frac{0±16}{4} ina he tāpiri te ±. Whakawehe 16 ki te 4.
x=-4
Nā, me whakaoti te whārite x=\frac{0±16}{4} ina he tango te ±. Whakawehe -16 ki te 4.
x=4 x=-4
Kua oti te whārite te whakatau.