Whakaoti mō x
x = -\frac{15}{2} = -7\frac{1}{2} = -7.5
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=3 ab=2\left(-90\right)=-180
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-90. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -180.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
Tātaihia te tapeke mō ia takirua.
a=-12 b=15
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(2x^{2}-12x\right)+\left(15x-90\right)
Tuhia anō te 2x^{2}+3x-90 hei \left(2x^{2}-12x\right)+\left(15x-90\right).
2x\left(x-6\right)+15\left(x-6\right)
Tauwehea te 2x i te tuatahi me te 15 i te rōpū tuarua.
\left(x-6\right)\left(2x+15\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=-\frac{15}{2}
Hei kimi otinga whārite, me whakaoti te x-6=0 me te 2x+15=0.
2x^{2}+3x-90=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-90\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 3 mō b, me -90 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-90\right)}}{2\times 2}
Pūrua 3.
x=\frac{-3±\sqrt{9-8\left(-90\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-3±\sqrt{9+720}}{2\times 2}
Whakareatia -8 ki te -90.
x=\frac{-3±\sqrt{729}}{2\times 2}
Tāpiri 9 ki te 720.
x=\frac{-3±27}{2\times 2}
Tuhia te pūtakerua o te 729.
x=\frac{-3±27}{4}
Whakareatia 2 ki te 2.
x=\frac{24}{4}
Nā, me whakaoti te whārite x=\frac{-3±27}{4} ina he tāpiri te ±. Tāpiri -3 ki te 27.
x=6
Whakawehe 24 ki te 4.
x=-\frac{30}{4}
Nā, me whakaoti te whārite x=\frac{-3±27}{4} ina he tango te ±. Tango 27 mai i -3.
x=-\frac{15}{2}
Whakahekea te hautanga \frac{-30}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=6 x=-\frac{15}{2}
Kua oti te whārite te whakatau.
2x^{2}+3x-90=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+3x-90-\left(-90\right)=-\left(-90\right)
Me tāpiri 90 ki ngā taha e rua o te whārite.
2x^{2}+3x=-\left(-90\right)
Mā te tango i te -90 i a ia ake anō ka toe ko te 0.
2x^{2}+3x=90
Tango -90 mai i 0.
\frac{2x^{2}+3x}{2}=\frac{90}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{3}{2}x=\frac{90}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{3}{2}x=45
Whakawehe 90 ki te 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=45+\left(\frac{3}{4}\right)^{2}
Whakawehea te \frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{4}. Nā, tāpiria te pūrua o te \frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{2}x+\frac{9}{16}=45+\frac{9}{16}
Pūruatia \frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{729}{16}
Tāpiri 45 ki te \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=\frac{729}{16}
Tauwehea x^{2}+\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{729}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{4}=\frac{27}{4} x+\frac{3}{4}=-\frac{27}{4}
Whakarūnātia.
x=6 x=-\frac{15}{2}
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}