Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+3x-4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-4\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{9-4\times 2\left(-4\right)}}{2\times 2}
Pūrua 3.
x=\frac{-3±\sqrt{9-8\left(-4\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-3±\sqrt{9+32}}{2\times 2}
Whakareatia -8 ki te -4.
x=\frac{-3±\sqrt{41}}{2\times 2}
Tāpiri 9 ki te 32.
x=\frac{-3±\sqrt{41}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{41}-3}{4}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{41}}{4} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{41}.
x=\frac{-\sqrt{41}-3}{4}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{41}}{4} ina he tango te ±. Tango \sqrt{41} mai i -3.
2x^{2}+3x-4=2\left(x-\frac{\sqrt{41}-3}{4}\right)\left(x-\frac{-\sqrt{41}-3}{4}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-3+\sqrt{41}}{4} mō te x_{1} me te \frac{-3-\sqrt{41}}{4} mō te x_{2}.