Tauwehe
2\left(x-\left(-2\sqrt{6}-5\right)\right)\left(x-\left(2\sqrt{6}-5\right)\right)
Aromātai
2\left(x^{2}+10x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
factor(2x^{2}+20x+2)
Pahekotia te 3x me 17x, ka 20x.
2x^{2}+20x+2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\times 2\times 2}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-20±\sqrt{400-4\times 2\times 2}}{2\times 2}
Pūrua 20.
x=\frac{-20±\sqrt{400-8\times 2}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-20±\sqrt{400-16}}{2\times 2}
Whakareatia -8 ki te 2.
x=\frac{-20±\sqrt{384}}{2\times 2}
Tāpiri 400 ki te -16.
x=\frac{-20±8\sqrt{6}}{2\times 2}
Tuhia te pūtakerua o te 384.
x=\frac{-20±8\sqrt{6}}{4}
Whakareatia 2 ki te 2.
x=\frac{8\sqrt{6}-20}{4}
Nā, me whakaoti te whārite x=\frac{-20±8\sqrt{6}}{4} ina he tāpiri te ±. Tāpiri -20 ki te 8\sqrt{6}.
x=2\sqrt{6}-5
Whakawehe -20+8\sqrt{6} ki te 4.
x=\frac{-8\sqrt{6}-20}{4}
Nā, me whakaoti te whārite x=\frac{-20±8\sqrt{6}}{4} ina he tango te ±. Tango 8\sqrt{6} mai i -20.
x=-2\sqrt{6}-5
Whakawehe -20-8\sqrt{6} ki te 4.
2x^{2}+20x+2=2\left(x-\left(2\sqrt{6}-5\right)\right)\left(x-\left(-2\sqrt{6}-5\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -5+2\sqrt{6} mō te x_{1} me te -5-2\sqrt{6} mō te x_{2}.
2x^{2}+20x+2
Pahekotia te 3x me 17x, ka 20x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}