Tauwehe
\left(x+1\right)\left(2x+1\right)
Aromātai
\left(x+1\right)\left(2x+1\right)
Graph
Pātaitai
Polynomial
2 x ^ { 2 } + 3 x + 1
Tohaina
Kua tāruatia ki te papatopenga
a+b=3 ab=2\times 1=2
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(2x^{2}+x\right)+\left(2x+1\right)
Tuhia anō te 2x^{2}+3x+1 hei \left(2x^{2}+x\right)+\left(2x+1\right).
x\left(2x+1\right)+2x+1
Whakatauwehea atu x i te 2x^{2}+x.
\left(2x+1\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 2x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
2x^{2}+3x+1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 2}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{9-4\times 2}}{2\times 2}
Pūrua 3.
x=\frac{-3±\sqrt{9-8}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-3±\sqrt{1}}{2\times 2}
Tāpiri 9 ki te -8.
x=\frac{-3±1}{2\times 2}
Tuhia te pūtakerua o te 1.
x=\frac{-3±1}{4}
Whakareatia 2 ki te 2.
x=-\frac{2}{4}
Nā, me whakaoti te whārite x=\frac{-3±1}{4} ina he tāpiri te ±. Tāpiri -3 ki te 1.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{4}{4}
Nā, me whakaoti te whārite x=\frac{-3±1}{4} ina he tango te ±. Tango 1 mai i -3.
x=-1
Whakawehe -4 ki te 4.
2x^{2}+3x+1=2\left(x-\left(-\frac{1}{2}\right)\right)\left(x-\left(-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{1}{2} mō te x_{1} me te -1 mō te x_{2}.
2x^{2}+3x+1=2\left(x+\frac{1}{2}\right)\left(x+1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
2x^{2}+3x+1=2\times \frac{2x+1}{2}\left(x+1\right)
Tāpiri \frac{1}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2x^{2}+3x+1=\left(2x+1\right)\left(x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}