Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(x^{2}+10x+24\right)
Tauwehea te 2.
a+b=10 ab=1\times 24=24
Whakaarohia te x^{2}+10x+24. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,24 2,12 3,8 4,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
1+24=25 2+12=14 3+8=11 4+6=10
Tātaihia te tapeke mō ia takirua.
a=4 b=6
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(x^{2}+4x\right)+\left(6x+24\right)
Tuhia anō te x^{2}+10x+24 hei \left(x^{2}+4x\right)+\left(6x+24\right).
x\left(x+4\right)+6\left(x+4\right)
Tauwehea te x i te tuatahi me te 6 i te rōpū tuarua.
\left(x+4\right)\left(x+6\right)
Whakatauwehea atu te kīanga pātahi x+4 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(x+4\right)\left(x+6\right)
Me tuhi anō te kīanga whakatauwehe katoa.
2x^{2}+20x+48=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\times 2\times 48}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-20±\sqrt{400-4\times 2\times 48}}{2\times 2}
Pūrua 20.
x=\frac{-20±\sqrt{400-8\times 48}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-20±\sqrt{400-384}}{2\times 2}
Whakareatia -8 ki te 48.
x=\frac{-20±\sqrt{16}}{2\times 2}
Tāpiri 400 ki te -384.
x=\frac{-20±4}{2\times 2}
Tuhia te pūtakerua o te 16.
x=\frac{-20±4}{4}
Whakareatia 2 ki te 2.
x=-\frac{16}{4}
Nā, me whakaoti te whārite x=\frac{-20±4}{4} ina he tāpiri te ±. Tāpiri -20 ki te 4.
x=-4
Whakawehe -16 ki te 4.
x=-\frac{24}{4}
Nā, me whakaoti te whārite x=\frac{-20±4}{4} ina he tango te ±. Tango 4 mai i -20.
x=-6
Whakawehe -24 ki te 4.
2x^{2}+20x+48=2\left(x-\left(-4\right)\right)\left(x-\left(-6\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -4 mō te x_{1} me te -6 mō te x_{2}.
2x^{2}+20x+48=2\left(x+4\right)\left(x+6\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.