Whakaoti mō x
x=-9
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}+2x-5-x^{2}=-6x+4
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}+2x-5=-6x+4
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+2x-5+6x=4
Me tāpiri te 6x ki ngā taha e rua.
x^{2}+8x-5=4
Pahekotia te 2x me 6x, ka 8x.
x^{2}+8x-5-4=0
Tangohia te 4 mai i ngā taha e rua.
x^{2}+8x-9=0
Tangohia te 4 i te -5, ka -9.
a+b=8 ab=-9
Hei whakaoti i te whārite, whakatauwehea te x^{2}+8x-9 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,9 -3,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -9.
-1+9=8 -3+3=0
Tātaihia te tapeke mō ia takirua.
a=-1 b=9
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(x-1\right)\left(x+9\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=1 x=-9
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+9=0.
2x^{2}+2x-5-x^{2}=-6x+4
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}+2x-5=-6x+4
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+2x-5+6x=4
Me tāpiri te 6x ki ngā taha e rua.
x^{2}+8x-5=4
Pahekotia te 2x me 6x, ka 8x.
x^{2}+8x-5-4=0
Tangohia te 4 mai i ngā taha e rua.
x^{2}+8x-9=0
Tangohia te 4 i te -5, ka -9.
a+b=8 ab=1\left(-9\right)=-9
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,9 -3,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -9.
-1+9=8 -3+3=0
Tātaihia te tapeke mō ia takirua.
a=-1 b=9
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(x^{2}-x\right)+\left(9x-9\right)
Tuhia anō te x^{2}+8x-9 hei \left(x^{2}-x\right)+\left(9x-9\right).
x\left(x-1\right)+9\left(x-1\right)
Tauwehea te x i te tuatahi me te 9 i te rōpū tuarua.
\left(x-1\right)\left(x+9\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-9
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+9=0.
2x^{2}+2x-5-x^{2}=-6x+4
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}+2x-5=-6x+4
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+2x-5+6x=4
Me tāpiri te 6x ki ngā taha e rua.
x^{2}+8x-5=4
Pahekotia te 2x me 6x, ka 8x.
x^{2}+8x-5-4=0
Tangohia te 4 mai i ngā taha e rua.
x^{2}+8x-9=0
Tangohia te 4 i te -5, ka -9.
x=\frac{-8±\sqrt{8^{2}-4\left(-9\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 8 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-9\right)}}{2}
Pūrua 8.
x=\frac{-8±\sqrt{64+36}}{2}
Whakareatia -4 ki te -9.
x=\frac{-8±\sqrt{100}}{2}
Tāpiri 64 ki te 36.
x=\frac{-8±10}{2}
Tuhia te pūtakerua o te 100.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-8±10}{2} ina he tāpiri te ±. Tāpiri -8 ki te 10.
x=1
Whakawehe 2 ki te 2.
x=-\frac{18}{2}
Nā, me whakaoti te whārite x=\frac{-8±10}{2} ina he tango te ±. Tango 10 mai i -8.
x=-9
Whakawehe -18 ki te 2.
x=1 x=-9
Kua oti te whārite te whakatau.
2x^{2}+2x-5-x^{2}=-6x+4
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}+2x-5=-6x+4
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+2x-5+6x=4
Me tāpiri te 6x ki ngā taha e rua.
x^{2}+8x-5=4
Pahekotia te 2x me 6x, ka 8x.
x^{2}+8x=4+5
Me tāpiri te 5 ki ngā taha e rua.
x^{2}+8x=9
Tāpirihia te 4 ki te 5, ka 9.
x^{2}+8x+4^{2}=9+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=9+16
Pūrua 4.
x^{2}+8x+16=25
Tāpiri 9 ki te 16.
\left(x+4\right)^{2}=25
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=5 x+4=-5
Whakarūnātia.
x=1 x=-9
Me tango 4 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}