Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+2x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\times 2\times 2}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 2 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2\times 2}}{2\times 2}
Pūrua 2.
x=\frac{-2±\sqrt{4-8\times 2}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-2±\sqrt{4-16}}{2\times 2}
Whakareatia -8 ki te 2.
x=\frac{-2±\sqrt{-12}}{2\times 2}
Tāpiri 4 ki te -16.
x=\frac{-2±2\sqrt{3}i}{2\times 2}
Tuhia te pūtakerua o te -12.
x=\frac{-2±2\sqrt{3}i}{4}
Whakareatia 2 ki te 2.
x=\frac{-2+2\sqrt{3}i}{4}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{3}i}{4} ina he tāpiri te ±. Tāpiri -2 ki te 2i\sqrt{3}.
x=\frac{-1+\sqrt{3}i}{2}
Whakawehe -2+2i\sqrt{3} ki te 4.
x=\frac{-2\sqrt{3}i-2}{4}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{3}i}{4} ina he tango te ±. Tango 2i\sqrt{3} mai i -2.
x=\frac{-\sqrt{3}i-1}{2}
Whakawehe -2-2i\sqrt{3} ki te 4.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Kua oti te whārite te whakatau.
2x^{2}+2x+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+2x+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
2x^{2}+2x=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}+2x}{2}=-\frac{2}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{2}{2}x=-\frac{2}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+x=-\frac{2}{2}
Whakawehe 2 ki te 2.
x^{2}+x=-1
Whakawehe -2 ki te 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
Tāpiri -1 ki te \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Whakarūnātia.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.