Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+18x-25=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-18±\sqrt{18^{2}-4\times 2\left(-25\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{324-4\times 2\left(-25\right)}}{2\times 2}
Pūrua 18.
x=\frac{-18±\sqrt{324-8\left(-25\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-18±\sqrt{324+200}}{2\times 2}
Whakareatia -8 ki te -25.
x=\frac{-18±\sqrt{524}}{2\times 2}
Tāpiri 324 ki te 200.
x=\frac{-18±2\sqrt{131}}{2\times 2}
Tuhia te pūtakerua o te 524.
x=\frac{-18±2\sqrt{131}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{131}-18}{4}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{131}}{4} ina he tāpiri te ±. Tāpiri -18 ki te 2\sqrt{131}.
x=\frac{\sqrt{131}-9}{2}
Whakawehe -18+2\sqrt{131} ki te 4.
x=\frac{-2\sqrt{131}-18}{4}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{131}}{4} ina he tango te ±. Tango 2\sqrt{131} mai i -18.
x=\frac{-\sqrt{131}-9}{2}
Whakawehe -18-2\sqrt{131} ki te 4.
2x^{2}+18x-25=2\left(x-\frac{\sqrt{131}-9}{2}\right)\left(x-\frac{-\sqrt{131}-9}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-9+\sqrt{131}}{2} mō te x_{1} me te \frac{-9-\sqrt{131}}{2} mō te x_{2}.