Whakaoti mō x
x=-7
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=17 ab=2\times 21=42
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx+21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,42 2,21 3,14 6,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 42.
1+42=43 2+21=23 3+14=17 6+7=13
Tātaihia te tapeke mō ia takirua.
a=3 b=14
Ko te otinga te takirua ka hoatu i te tapeke 17.
\left(2x^{2}+3x\right)+\left(14x+21\right)
Tuhia anō te 2x^{2}+17x+21 hei \left(2x^{2}+3x\right)+\left(14x+21\right).
x\left(2x+3\right)+7\left(2x+3\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(2x+3\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi 2x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{3}{2} x=-7
Hei kimi otinga whārite, me whakaoti te 2x+3=0 me te x+7=0.
2x^{2}+17x+21=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-17±\sqrt{17^{2}-4\times 2\times 21}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 17 mō b, me 21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\times 2\times 21}}{2\times 2}
Pūrua 17.
x=\frac{-17±\sqrt{289-8\times 21}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-17±\sqrt{289-168}}{2\times 2}
Whakareatia -8 ki te 21.
x=\frac{-17±\sqrt{121}}{2\times 2}
Tāpiri 289 ki te -168.
x=\frac{-17±11}{2\times 2}
Tuhia te pūtakerua o te 121.
x=\frac{-17±11}{4}
Whakareatia 2 ki te 2.
x=-\frac{6}{4}
Nā, me whakaoti te whārite x=\frac{-17±11}{4} ina he tāpiri te ±. Tāpiri -17 ki te 11.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{28}{4}
Nā, me whakaoti te whārite x=\frac{-17±11}{4} ina he tango te ±. Tango 11 mai i -17.
x=-7
Whakawehe -28 ki te 4.
x=-\frac{3}{2} x=-7
Kua oti te whārite te whakatau.
2x^{2}+17x+21=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+17x+21-21=-21
Me tango 21 mai i ngā taha e rua o te whārite.
2x^{2}+17x=-21
Mā te tango i te 21 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}+17x}{2}=-\frac{21}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{17}{2}x=-\frac{21}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{17}{2}x+\left(\frac{17}{4}\right)^{2}=-\frac{21}{2}+\left(\frac{17}{4}\right)^{2}
Whakawehea te \frac{17}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{17}{4}. Nā, tāpiria te pūrua o te \frac{17}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{17}{2}x+\frac{289}{16}=-\frac{21}{2}+\frac{289}{16}
Pūruatia \frac{17}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{17}{2}x+\frac{289}{16}=\frac{121}{16}
Tāpiri -\frac{21}{2} ki te \frac{289}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{17}{4}\right)^{2}=\frac{121}{16}
Tauwehea x^{2}+\frac{17}{2}x+\frac{289}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{17}{4}=\frac{11}{4} x+\frac{17}{4}=-\frac{11}{4}
Whakarūnātia.
x=-\frac{3}{2} x=-7
Me tango \frac{17}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}