Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=11 ab=2\times 15=30
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx+15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,30 2,15 3,10 5,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 30.
1+30=31 2+15=17 3+10=13 5+6=11
Tātaihia te tapeke mō ia takirua.
a=5 b=6
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(2x^{2}+5x\right)+\left(6x+15\right)
Tuhia anō te 2x^{2}+11x+15 hei \left(2x^{2}+5x\right)+\left(6x+15\right).
x\left(2x+5\right)+3\left(2x+5\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(2x+5\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi 2x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
2x^{2}+11x+15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\times 2\times 15}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-11±\sqrt{121-4\times 2\times 15}}{2\times 2}
Pūrua 11.
x=\frac{-11±\sqrt{121-8\times 15}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-11±\sqrt{121-120}}{2\times 2}
Whakareatia -8 ki te 15.
x=\frac{-11±\sqrt{1}}{2\times 2}
Tāpiri 121 ki te -120.
x=\frac{-11±1}{2\times 2}
Tuhia te pūtakerua o te 1.
x=\frac{-11±1}{4}
Whakareatia 2 ki te 2.
x=-\frac{10}{4}
Nā, me whakaoti te whārite x=\frac{-11±1}{4} ina he tāpiri te ±. Tāpiri -11 ki te 1.
x=-\frac{5}{2}
Whakahekea te hautanga \frac{-10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{-11±1}{4} ina he tango te ±. Tango 1 mai i -11.
x=-3
Whakawehe -12 ki te 4.
2x^{2}+11x+15=2\left(x-\left(-\frac{5}{2}\right)\right)\left(x-\left(-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{5}{2} mō te x_{1} me te -3 mō te x_{2}.
2x^{2}+11x+15=2\left(x+\frac{5}{2}\right)\left(x+3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
2x^{2}+11x+15=2\times \frac{2x+5}{2}\left(x+3\right)
Tāpiri \frac{5}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2x^{2}+11x+15=\left(2x+5\right)\left(x+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.